机器学习决策树算法cart剪枝

系统管理员 2024-04-03 09:12 82阅读 0赞

发表评论

表情:
评论列表 (有 0 条评论,82人围观)

还没有评论,来说两句吧...

相关阅读

    相关 机器学习决策算法

    1-1 基本流程 决策树是一个有监督分类与回归算法。 决策树的生成只考虑局部最优,相对的,决策树剪枝则考虑全局最优。 一、概念: 决策树:是一种树形结构,其中每个

    相关 决策(2)CART

    上一篇文章介绍了基于ID3的决策树,讲到了其中的关键元素是:特征选择、决策树构造以及剪枝;同样,CART(classification and regression tree)

    相关 决策剪枝,分类回归CART

    决策树的剪枝 决策树为什么要剪枝?原因就是避免决策树“过拟合”样本。前面的算法生成的决策树非常的详细而庞大,每个属性都被详细地加以考虑,决策树的树叶节点所覆盖的训练样本都是“

    相关 CART剪枝

    1. CART剪枝介绍 > CART 剪枝算法从完全生长的决策树的底端剪去一些子树,使决策树变小(模型简单),从而能够对未知数据有更准确的预测。CART剪枝算法由两步组成