决策树 客官°小女子只卖身不卖艺 2021-09-15 06:34 495阅读 0赞 #### 熵的定义 #### ![5057999-5702853710d12e87.png][] 计算给定数据集的熵 def calcShannonEnt(dataSet): numEntires = len(dataSet) #返回数据集的行数 labelCounts = {} #保存每个标签(Label)出现次数的字典 for featVec in dataSet: #对每组特征向量进行统计 currentLabel = featVec[-1] #提取标签(Label)信息 if currentLabel not in labelCounts.keys(): #如果标签(Label)没有放入统计次数的字典,添加进去 labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 #Label计数 shannonEnt = 0.0 #经验熵(香农熵) for key in labelCounts: #计算香农熵 prob = float(labelCounts[key]) /numEntires #选择该标签(Label)的概率 shannonEnt -= prob * log(prob, 2) #利用公式计算 return shannonEnt #返回经验熵(香农熵) 数据集格式 ![5057999-cd5960ca5e3eb8d1.png][] def createDataSet(): dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']] labels=['no surfacing','flippers'] return dataSet,labels 进行测试计算,添加了第三个名为maybe的分类,熵增加。(熵越高,则混合的数据越多) from decisionTree import * myDat,labels=createDataSet() print(myDat) print(labels) print(calcShannonEnt(myDat)) myDat[0][-1]='maybe' print(myDat) print(calcShannonEnt(myDat)) ![5057999-3f32bc2d66071141.png][] -------------------- ### 按照给定特征划分数据集 ### def splitDataSet(dataSet, axis, value): retDataSet=[] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec=featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet 测试及结果 print(splitDataSet(myDat,0,1)) #[[1, 'maybe'], [1, 'yes'], [0, 'no']] print(splitDataSet(myDat,0,0)) #[[1, 'no'], [1, 'no']] def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 #特征数量 baseEntropy = calcShannonEnt(dataSet) #计算数据集的香农熵 bestInfoGain = 0.0 #信息增益 bestFeature = -1 #最优特征的索引值 for i in range(numFeatures): #遍历所有特征 #获取dataSet的第i个所有特征 featList = [example[i] for example in dataSet] uniqueVals = set(featList) #创建set集合{},元素不可重复 newEntropy = 0.0 #经验条件熵 for value in uniqueVals: #计算信息增益 subDataSet = splitDataSet(dataSet, i, value) #subDataSet划分后的子集 prob = len(subDataSet) / float(len(dataSet)) #计算子集的概率 newEntropy += prob * calcShannonEnt(subDataSet) #根据公式计算经验条件熵 infoGain = baseEntropy - newEntropy #信息增益 print("第%d个特征的增益为%.3f" % (i, infoGain)) #打印每个特征的信息增益 if (infoGain > bestInfoGain): #计算信息增益 bestInfoGain = infoGain #更新信息增益,找到最大的信息增益 bestFeature = i #记录信息增益最大的特征的索引值 return bestFeature #返回信息增益最大的特征的索引值 [5057999-5702853710d12e87.png]: /images/20210811/fe2e38229a92499197a6cbecee35f066.png [5057999-cd5960ca5e3eb8d1.png]: /images/20210811/4ea840624b6640228b309fe621268533.png [5057999-3f32bc2d66071141.png]: /images/20210811/8861b38b916f430aa251d2f0247aea54.png
相关 决策树 [https://www.cnblogs.com/lovephysics/p/7231294.html][https_www.cnblogs.com_lovephysics_p 今天药忘吃喽~/ 2022年12月20日 02:22/ 0 赞/ 46 阅读
相关 决策树 1 决策树学习是以实例为基础的归纳学习算法,是应用最广泛的逻辑方法。 2 典型的决策树学习系统采用自顶向下的方法,在部分搜索空间中搜索解决方案。它可以确保求出一个简单的决策树 桃扇骨/ 2022年06月14日 04:27/ 0 赞/ 303 阅读
相关 决策树 决策树是基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制。例如,我们要对“这是好瓜吗?”这样的问题进行决策时,通常会进行一系列的判断或“子决策”:我们先看“ 旧城等待,/ 2022年05月25日 05:39/ 0 赞/ 379 阅读
相关 决策树 一、 决策树简介 决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。如图所示,决策树从根节点开始延伸,经过不 骑猪看日落/ 2022年05月17日 00:55/ 0 赞/ 339 阅读
相关 决策树 决策树:决策树是一个树形结构,每个非叶节点表示一个特征树形的测试,每个分支代表这个特征属性在某个值域上的输出,而叶节点存放一个类别。 使用决策树进行决策的原理就是: 从根 淩亂°似流年/ 2022年05月13日 08:50/ 0 赞/ 275 阅读
相关 决策树 1 认识决策树 如何高效的进行决策? 特征的先后顺序(哪个特征先看,哪个特征后看) 2 决策树分类原理详解(看哪个特征能筛掉更多的数据,尽可能通过少 小咪咪/ 2022年04月23日 01:16/ 0 赞/ 266 阅读
相关 决策树 决策树 声明 本文是来自网络文档和书本(周老师)的结合。 概述 决策树(Decision Tree)是在已知各种情况发生概率的[基础][Link 1]上,通 青旅半醒/ 2022年01月30日 06:49/ 0 赞/ 513 阅读
相关 决策树 决策树对实例进行分类的树形结构,由节点和有向边组成。其实很像平时画的流程图。 学习决策树之前要搞懂几个概念: 熵:表示随机变量不确定性的度量,定义:H(p)=-![1409 冷不防/ 2021年09月30日 04:16/ 0 赞/ 543 阅读
相关 决策树 熵的定义 ![5057999-5702853710d12e87.png][] 计算给定数据集的熵 def calcShannonEnt(dataSet): 客官°小女子只卖身不卖艺/ 2021年09月15日 06:34/ 0 赞/ 496 阅读
还没有评论,来说两句吧...