tf.reducemean() Love The Way You Lie 2021-09-27 23:10 208阅读 0赞 官方文档说明: 函数: def reduce_mean(input_tensor, axis=None, keepdims=None, name=None, reduction_indices=None, keep_dims=None): **参数说明**: input\_tensor:需要被降维的tensor axis:需要被降维的维度,默认为空,则reduce所有维度。 keepdims:如果为true,则保留reduce的维度为1 name :op的名字 返回值:返回一个tensor **函数说明**:计算input\_tensor的平均值(在axis维度)。 例子: import tensorflow as tf x = tf.constant([[1., 1.], [2., 2.]]) sess = tf.Session() res1 = tf.reduce_mean(x) # 1.5 res2 = tf.reduce_mean(x, 0) # [1.5, 1.5] res3 = tf.reduce_mean(x, 1) # [1., 2.] print('原始数据:') print(sess.run(x)) print('========================') print('计算结果:') print(sess.run(res1)) print(sess.run(res2)) print(sess.run(res3)) print('==========keepdims参数为True==============') res1 = tf.reduce_mean(x,keepdims=True) # [[1.5]] res2 = tf.reduce_mean(x,axis=0, keepdims=True) # [[1.5 1.5]] res3 = tf.reduce_mean(x,axis=1, keepdims=True) # [[1.] [2.]] print('计算结果:') print(sess.run(res1)) print(sess.run(res2)) print(sess.run(res3)) print('==========三维==============') y = tf.constant([[[1., 1.],[2.,2.]], [[3.,3.],[4.,4.]]]) res1 = tf.reduce_mean(y) # 2.5 res2 = tf.reduce_mean(y, 0) # [[2. 2.] [3. 3.]] res3 = tf.reduce_mean(y, 1) # [[1.5 1.5] [3.5 3.5]] res4 = tf.reduce_mean(y, 2) # [[1. 2.] [3. 4.]] print('原始数据:') print(sess.run(y)) print('计算结果:') print(sess.run(res1)) print(sess.run(res2)) print(sess.run(res3)) print(sess.run(res4)) sess.close() 打印结果: > 原始数据: > \[\[1. 1.\] > \[2. 2.\]\] > ======================== > 计算结果: > 1.5 > \[1.5 1.5\] > \[1. 2.\] > keepdims参数为True==== > 计算结果: > \[\[1.5\]\] > \[\[1.5 1.5\]\] > \[\[1.\] > \[2.\]\] > 三维==== > 原始数据: > \[\[\[1. 1.\] > \[2. 2.\]\] > > \[\[3. 3.\] > \[4. 4.\]\]\] > 计算结果: > 2.5 > \[\[2. 2.\] > \[3. 3.\]\] > \[\[1.5 1.5\] > \[3.5 3.5\]\] > \[\[1. 2.\] > \[3. 4.\]\]
还没有评论,来说两句吧...