Matlab高性能编程——代码优化和并行计算

╰+哭是因爲堅強的太久メ 2021-11-23 05:14 825阅读 0赞

Jeremy Lin @HQU

Update: 2014/4/29

Matlab代码优化

Matlab是一种高级计算机语言,同时也是一个用于算法开发,数据可视化,数据分析和数值计算的交互式工作环境。尽管Matlab软件提供了大量专业化的工具箱,使用户避免了很多编程工作,但是在实际工作中仍不免需要自行编写Matlab代码以应对各种纷繁复杂的应用。我们需要明白Matlab是一种专门为数组运算而设计的语言,因此在程序设计中要注意充分利用这一优点来加快运算速度。

本文从以下三个方面展开:

  • 程序语法分析 :Code Analyzer(M-Lint)
  • 程序性能分析 :Profiler
  • 运算性能提升 :向量化、预分配

1.程序语法分析

关于Matlab的程序语法分析,我们要充分利用Code Analyzer的各种提示,修改出现的各种warning,来改善程序。 所谓的Code Analyzer就是在m文件编辑器右边的一栏warning提示,当程序出现warning时,它附带地提供了一些可参考的方法。

在下图中,我们可见到两个warning,一个是没有分号结束符,这样会使代码结果直接输出,有过编程经验的人都知道,在代码的运行过程中不断输出中间结果,会大大增加程序的运行时间;另一个warning是没有对其中的变量进行初始化,这样会让程序在运行过程中不断重复初始化变量,同时也会大大消耗内存。

SouthEast

一个简单的例子如下所示:

SouthEast 1

当我们没有去掉warning时,程序的运行时间是:5.570289s,而当我们添加了代码的分号结束符后,程序的运行时间是:0.008179s,对比发现程序提速非常明显。

2.程序性能分析

对程序的性能分析我们主要利用Profiler来深度了解代码的性能,找出瓶颈代码,然后做出修改以提升性能。

在Matlab中打开Profiler只要点击Run and Time即可,位置如下图所示:

SouthEast 2

我们从Profiler可以得到

  • 函数调用的总次数
  • 每次函数调用耗时状况

然后根据各个函数的调用情况,结合实际情况,把可以替换的函数直接替换,不能替换的高调用函数尽量优化。

SouthEast 3

3.运算性能提升

运算性能提升主要利用两种方法:内存预分配和向量化

首先我们来看看内存预分配的必要性:

需要明白,当你未进行内存预分配时,比如执行如下的代码:

  1. >> x=4;
  2. >> x(2)=7;
  3. >> x(3)=12;

它在内存中的过程是这样的:

SouthEast 4

从上图我们可以发现,改变数组大小是很耗费内存的,因此最好进行内存预分配,同时它能够减少存储器碎片。

接下来,我们来看看向量化,所谓向量化即是将for循环和while循环转换为等价的向量或矩阵运算,它可以大大加速运算,还增强了代码的可读性。

我们从一个简单的例子开始:

原程序:

  1. A=1;
  2. for x=1:10000000
  3. f(x)=A*sin((x-1)/(2*pi));
  4. end
  5. 运行时间:12.714 s

向量化后:

  1. <span style="font-size:14px;">A=1;
  2. x=0:10000000-1;
  3. f=A*sin(x/(2*pi));
  4. 运行时间:0.544 s</span>

可以发现,向量化后,程序的运行速度提高了23倍左右。

虽然一维的向量化很简单,但是,当被评估的函数有两个变量时,优化的方法可能就会复杂一些。

MATLAB使用meshgrid来实现对二维函数的评估,该函数的语法为

  1. [C, R] = meshgrid(c, r)

该函数将由行向量c和r指定的域变换成数组C和R,这两个数组能用来评估有着两个变量的函数和三维表面图(注意,在meshgrid的输入和输出中,列总是首先列出)。

输出数组C是向量c的副本,R是r的副本。例如,假设我们想形成一个二维函数,该函数的元素是坐标向量x和y的值的平方和,其中x=0, 1, 2; y=0, 1。向量r由坐标的行向量构成:r=[0, 1, 2];类似的,c由坐标的列向量构成:c=[0 1](注意,此处的r和c均为行向量)。将这两个向量代入meshgrid可得到如下数组:

  1. >> [C,R]=meshgrid(c,r)
  2. C =
  3. 0 1
  4. 0 1
  5. 0 1
  6. R =
  7. 0 0
  8. 1 1
  9. 2 2

我们感兴趣这个函数的实现:

  1. >> h=R.^2+C.^2
  2. h =
  3. 0 1
  4. 1 2
  5. 4 5

例子:

  1. tic
  2. u0=1/(4*pi);
  3. v0=1/(4*pi);
  4. for r=1:1000
  5. u0x=u0*(r-1);
  6. for c=1:1000
  7. v0y=v0*(c-1);
  8. f(r,c)=sin(u0x+v0y);
  9. end
  10. end
  11. t1=toc
  12. 运行时间: 2.4337 s

向量化后:

  1. tic
  2. u0=1/(4*pi);
  3. v0=1/(4*pi);
  4. r=0:1000-1;
  5. c=0:1000-1;
  6. [C,R] = meshgrid(c,r);
  7. g=sin(u0*R+v0*C);
  8. t2=toc
  9. 运行时间: 0.0590s

向量后快了41倍。

OTHER TIPS:

  • 以列向量存储:以列作为双重for循环的外循环会比以行作为外循环运算速度更快
  • 逻辑索引运算性能更好:例子如下

    %%
    N=2000;
    A=magic(N);
    A1=magic(N);
    A2=magic(N);
    myRef=1e6;
    %%
    tic
    ix=1;
    vals=zeros(size(A(:)));
    for jj=1:N

    1. for ii=1:N
    2. if A(ii,jj)>myRef
    3. vals(ix) = A(ii,jj);
    4. ix=ix+1;
    5. end
    6. end

    end

    % vals(ix:end)=[];
    toc

    %%

运行时间:Elapsed time is 5.466597 seconds.

  1. tic
  2. vals=A2(A2>myRef);
  3. toc

运行时间:Elapsed time is 0.084450 seconds.

  • In-place操作 :减少临时变量的使用

    N=3e3;
    x=rand(N);
    tic;
    y=x1.2;
    toc;
    %Elapsed time is 0.073008 seconds.
    %% In-place 操作
    tic;
    x=x
    1.2;
    toc;
    %Elapsed time is 0.037856 seconds.

MATLAB并行计算

关于Matlab并行计算,这一块我实际的经验较少,只做一点浅显的介绍,更多相关的资料见下文的参考资料。

1、Matlab并行计算原理

Matlab的并行计算实质还是主从结构的分布式计算。当你初始化Matlab并行计算环境时,你最初的Matlab进程自动成为主节点,同时初始化多个Matlab计算子节点。Parfor的作用就是让这些子节点同时运行Parfor语句段中的代码。Parfor运行之初,主节点会将Parfor循环程序之外变量传递给计算子节点。子节点运算过程时互不干扰,运算完毕,则应该有相应代码将各子节点得到的结果组合到同一个数组变量中,并返回到Matlab主节点。当然,最终计算完毕应该手动关闭计算子节点。

2、初始化Matlab并行计算环境

这里讲述的方法仅针对多核机器做并行计算的情况。设机器的CPU核心数量是CoreNum双核机器的CoreNum2,依次类推。CoreNum以不等于核心数量,但是如果CoreNum小于核心数量则核心利用率没有最大化,如果CoreNum大于核心数量则效率反而可能下降。因此单核机器就不要折腾并行计算了,否则速度还更慢。

下面一段代码初始化Matlab并行计算环境:

  1. %Initialize Matlab Parallel Computing Enviornment by Xaero | Macro2.cn
  2. CoreNum=2; %设定机器CPU核心数量,我的机器是双核,所以CoreNum=2
  3. if matlabpool('size')<=0 %判断并行计算环境是否已然启动
  4. matlabpool('open','local',CoreNum); %若尚未启动,则启动并行环境
  5. else
  6. disp('Already initialized'); %说明并行环境已经启动。
  7. end

运行成功后会出现如下语句:

Starting matlabpool using the ‘local’ configuration … connected to 2 labs.

如果运行出错,按照下面的办法检测:

首先运行:

matlabpool size

如果出错,说明你没有安装Matlab并行工具箱。确认安装了此工具箱后,运行:

matlabpool open local 2;

如果出错,证明你的机器在开启并行计算时设置有问题。

3、终止Matlab并行计算环境

用上述语句启动Matlab并行计算环境的话,在你的内存里面有CoreNum个Matlab进程存在,每个占用内存都在百兆以上。(可以用Windows任务管理器查看),故完成运行计算后可以将其关闭。关闭的命令很简单:

matlabpool close

Reference:

[1] Rafael C. Gonzalez. Digital Image Processing Using MATLAB.

[2] mathworks webinars

[3] Matlab Help

[4] Matlab并行编程方法 Rachel Zhang的专栏

本文地址:http://blog.csdn.net/linj_m/article/details/9730717

更多资源请关注 博客:LinJM-机器视觉 微博:林建民-机器视觉

发表评论

表情:
评论列表 (有 0 条评论,825人围观)

还没有评论,来说两句吧...

相关阅读

    相关 Matlab 并行代码

           转自:[并行代码][Link 1]   1 并行问题的由来——从抛硬币说起        举个简单的例子:抛100次硬币统计正面向上的次数。我们可以拿一个硬