Algorithm | Tree traversal
There are three types of depth-first traversal: pre-order,in-order, and post-order.
For a binary tree, they are defined as operations recursively at each node, starting with the root node as follows:
Pre-order
Visit the root.
Traverse the left subtree.
Traverse the right subtree.
iterativePreorder(node)
parentStack = empty stack
parentStack.push(null)
top = node
while ( top != null )
visit( top )
if ( top.right != null )
parentStack.push(top.right)
if ( top.left != null )
parentStack.push(top.left)
top = parentStack.pop()
In-order
Traverse the left subtree.
Visit root.
Traverse the right subtree.
iterativeInorder(node)
parentStack = empty stack
while (not parentStack.isEmpty() or node ≠ null)
if (node ≠ null)
parentStack.push(node)
node = node.left
else
node = parentStack.pop()
visit(node)
node = node.right
Post-order
Traverse the left subtree.
Traverse the right subtree.
Visit the root.
iterativePostorder(node)
parentStack = empty stack
lastnodevisited = null
while (not parentStack.isEmpty() or node ≠ null)
if (node ≠ null)
parentStack.push(node)
node = node.left
else
peeknode = parentStack.peek()
if (peeknode.right ≠ null and lastnodevisited ≠ peeknode.right)
/* if right child exists AND traversing node from left child, move right */
node = peeknode.right
else
parentStack.pop()
visit(peeknode)
lastnodevisited = peeknode
Morris Travel
1 /**
2 * Definition for binary tree
3 * struct TreeNode {
4 * int val;
5 * TreeNode *left;
6 * TreeNode *right;
7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
8 * };
9 */
10 class Solution {
11 public:
12 vector<int> inorderTraversal(TreeNode *root) {
13 vector<int> ret;
14 if (!root) return ret;
15 TreeNode *cur = root;
16
17 while (cur) {
18 if (!cur->left) {
19 ret.push_back(cur->val);
20 cur = cur->right;
21 } else {
22 TreeNode *rightmost = cur->left;
23 while (rightmost->right != NULL && rightmost->right != cur) rightmost = rightmost->right;
24 if (rightmost->right == cur) {
25 rightmost->right = NULL;
26 ret.push_back(cur->val);
27 cur = cur->right;
28 } else {
29 rightmost->right = cur;
30 cur = cur->left;
31 }
32 }
33 }
34
35 return ret;
36 }
37 };
后序:
转载于//www.cnblogs.com/linyx/p/3627184.html
还没有评论,来说两句吧...