ValueError: Tensor conversion requested dtype int64 for Tensor with dtype float64: ‘Tensor(“loss/a

£神魔★判官ぃ 2022-02-12 16:27 395阅读 0赞

用keras以TensorFlow作为后端重写相对熵函数,报错。。。

  1. def KL(y_true, y_pred):
  2. weights = K.sum(K.cast(K.argmax(y_true, axis=1)*K.log(K.argmax(y_true, axis=1)/K.argmax(y_pred, axis=1)),dtype='float32'))
  3. return weights* losses.categorical_crossentropy(y_true, y_pred)

报错:

  1. ValueError: Tensor conversion requested dtype int64 for Tensor with dtype float64: 'Tensor("loss/a

原因是因为:K.log(K.argmax(y_true, axis=1)/K.argmax(y_pred, axis=1))进行log计算时得到的数为‘float64’,而K.argmax(y_true, axis=1)得到的结果为int64,所以将K.argmax(y_true, axis=1)改为K.cast(K.argmax(y_true, axis=1),dtype='float64')int64转变为‘float64’

正确代码为:相对熵函数

  1. def KL(y_true, y_pred):
  2. weights = K.sum(K.cast(K.cast(K.argmax(y_true, axis=1),dtype='float64')*K.log(K.argmax(y_true, axis=1)/K.argmax(y_pred, axis=1)),dtype='float32'))
  3. return weights* losses.categorical_crossentropy(y_true, y_pred)

发表评论

表情:
评论列表 (有 0 条评论,395人围观)

还没有评论,来说两句吧...

相关阅读