Hashtable、Hashmap、ConcurrentHashMap 淡淡的烟草味﹌ 2022-02-24 01:26 356阅读 0赞 Hashtable和Hashmap理解: HashMap和Hashtable都实现了Map接口,但决定用哪一个之前先要弄清楚它们之间的分别。主要的区别有:线程安全性,同步(synchronization),以及速度。 1.HashMap几乎可以等价于Hashtable,除了HashMap是非synchronized的,并可以接受null(HashMap可以接受为null的键值(key)和值(value),而Hashtable则不行)。 注(为什么Hashmap中键可以为null,而Hsahtable却不可以): HashMap在put的时候会调用hash()方法来计算key的hashcode值,可以从hash算法中看出当key==null时返回的值为0。因此key为null时,hash算法返回值为0,不会调用key的hashcode方法(利用的短路原则)。 当HashTable存入的value为null时,抛出NullPointerException异常。如果value不为null,而key为空,在执行到int hash = key.hashCode()时同样会抛出NullPointerException异常,有一个专门判断键是否为空的if语句,如果为空抛出异常。 2.HashMap是非synchronized,而Hashtable是synchronized,这意味着Hashtable是线程安全的,多个线程可以共享一个Hashtable;而如果没有正确的同步的话,多个线程是不能共享HashMap的。Java 5提供了ConcurrentHashMap,它是HashTable的替代,比HashTable的扩展性更好。 3另一个区别是HashMap的迭代器(Iterator)是fail-fast迭代器,而Hashtable的enumerator迭代器不是fail-fast的。所以当有其它线程改变了HashMap的结构(增加或者移除元素),将会抛出ConcurrentModificationException,但迭代器本身的remove()方法移除元素则不会抛出ConcurrentModificationException异常。但这并不是一个一定发生的行为,要看JVM。这条同样也是Enumeration和Iterator的区别。 4.由于Hashtable是线程安全的也是synchronized,所以在单线程环境下它比HashMap要慢。如果你不需要同步,只需要单一线程,那么使用HashMap性能要好过Hashtable。 5.HashMap不能保证随着时间的推移Map中的元素次序是不变的。 JDK 1.8 以前 HashMap 的实现是 数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当 HashMap 中有大量的元素都存放到同一个桶中时,这个桶下有一条长长的链表,这个时候 HashMap 就相当于一个单链表,假如单链表有 n 个元素,遍历的时间复杂度就是 O(n),完全失去了它的优势。针对这种情况,JDK 1.8 中引入了 红黑树(查找时间复杂度为 O(logn))来优化这个问题。引入TreeNode节点,当链表长度大于8时转换为红黑树。 HashMap :先说HashMap,HashMap是线程不安全的,在并发环境下,可能会形成环状链表(扩容时可能造成,具体原因自行百度google或查看源码分析),导致get操作时,cpu空转,所以,在并发环境中使用HashMap是非常危险的。对象的key、value值均可为null。 ## Java7 HashMap ## HashMap 是最简单的,一来我们非常熟悉,二来就是它不支持并发操作,所以源码也非常简单。 首先,我们用下面这张图来介绍 HashMap 的结构。 ![1][] > 这个仅仅是示意图,因为没有考虑到数组要扩容的情况,具体的后面再说。 大方向上,HashMap 里面是一个数组,然后数组中每个元素是一个单向链表。 上图中,每个绿色的实体是嵌套类 Entry 的实例,Entry 包含四个属性:key, value, hash 值和用于单向链表的 next。 capacity:当前数组容量,始终保持 2^n,可以扩容,扩容后数组大小为当前的 2 倍。 loadFactor:负载因子,默认为 0.75。 threshold:扩容的阈值,等于 capacity \* loadFactor ## Java8 HashMap ## Java8 对 HashMap 进行了一些修改,最大的不同就是利用了红黑树,所以其由 数组+链表+红黑树 组成。 根据 Java7 HashMap 的介绍,我们知道,查找的时候,根据 hash 值我们能够快速定位到数组的具体下标,但是之后的话,需要顺着链表一个个比较下去才能找到我们需要的,时间复杂度取决于链表的长度,为 O(n)。 为了降低这部分的开销,在 Java8 中,当链表中的元素超过了 8 个以后,会将链表转换为红黑树,在这些位置进行查找的时候可以降低时间复杂度为 O(logN)。 来一张图简单示意一下吧: ![2][] > 注意,上图是示意图,主要是描述结构,不会达到这个状态的,因为这么多数据的时候早就扩容了。 下面,我们还是用代码来介绍吧,个人感觉,Java8 的源码可读性要差一些,不过精简一些。 Java7 中使用 Entry 来代表每个 HashMap 中的数据节点,Java8 中使用 Node,基本没有区别,都是 key,value,hash 和 next 这四个属性,不过,Node 只能用于链表的情况,红黑树的情况需要使用 TreeNode。 我们根据数组元素中,第一个节点数据类型是 Node 还是 TreeNode 来判断该位置下是链表还是红黑树的。 HashTable : HashTable和HashMap的实现原理几乎一样,差别无非是1.HashTable不允许key和value为null;HashTable是线程安全的。但是HashTable线程安全的策略实现代价却太大了,简单粗暴,get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,相当于将所有的操作串行化,在竞争激烈的并发场景中性能就会非常差。 ConcurrentHashMap:ConcurrentHashMap采用了非常精妙的”分段锁”策略,ConcurrentHashMap的主干是个Segment数组。final Segment<K,V>\[\] segments; Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,并发环境下,对于不同Segment的数据进行操作是不用考虑锁竞争的。(就按默认的ConcurrentLeve为16来讲,理论上就允许16个线程并发执行,有木有很酷)。put加锁。get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰,volatile可以保证内存可见性,所以不会读取到过期数据。 ## Java7 ConcurrentHashMap ## ConcurrentHashMap 和 HashMap 思路是差不多的,但是因为它支持并发操作,所以要复杂一些。 整个 ConcurrentHashMap 由一个个 Segment 组成,Segment 代表”部分“或”一段“的意思,所以很多地方都会将其描述为分段锁。注意,行文中,我很多地方用了“槽”来代表一个 segment。 简单理解就是,ConcurrentHashMap 是一个 Segment 数组,Segment 通过继承 ReentrantLock 来进行加锁,所以每次需要加锁的操作锁住的是一个 segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全。 ![3][] concurrencyLevel:并行级别、并发数、Segment 数,怎么翻译不重要,理解它。默认是 16,也就是说 ConcurrentHashMap 有 16 个 Segments,所以理论上,这个时候,最多可以同时支持 16 个线程并发写,只要它们的操作分别分布在不同的 Segment 上。这个值可以在初始化的时候设置为其他值,但是一旦初始化以后,它是不可以扩容的。 再具体到每个 Segment 内部,其实每个 Segment 很像之前介绍的 HashMap,不过它要保证线程安全,所以处理起来要麻烦些。 ### 并发问题分析 ### 现在我们已经说完了 put 过程和 get 过程,我们可以看到 get 过程中是没有加锁的,那自然我们就需要去考虑并发问题。 添加节点的操作 put 和删除节点的操作 remove 都是要加 segment 上的独占锁的,所以它们之间自然不会有问题,我们需要考虑的问题就是 get 的时候在同一个 segment 中发生了 put 或 remove 操作。 1. put 操作的线程安全性。 * 初始化槽,这个我们之前就说过了,使用了 CAS 来初始化 Segment 中的数组。 * 添加节点到链表的操作是插入到表头的,所以,如果这个时候 get 操作在链表遍历的过程已经到了中间,是不会影响的。当然,另一个并发问题就是 get 操作在 put 之后,需要保证刚刚插入表头的节点被读取,这个依赖于 setEntryAt 方法中使用的 UNSAFE.putOrderedObject。 * 扩容。扩容是新创建了数组,然后进行迁移数据,最后面将 newTable 设置给属性 table。所以,如果 get 操作此时也在进行,那么也没关系,如果 get 先行,那么就是在旧的 table 上做查询操作;而 put 先行,那么 put 操作的可见性保证就是 table 使用了 volatile 关键字。 2. remove 操作的线程安全性。 remove 操作我们没有分析源码,所以这里说的读者感兴趣的话还是需要到源码中去求实一下的。 get 操作需要遍历链表,但是 remove 操作会”破坏”链表。 如果 remove 破坏的节点 get 操作已经过去了,那么这里不存在任何问题。 如果 remove 先破坏了一个节点,分两种情况考虑。 1、如果此节点是头结点,那么需要将头结点的 next 设置为数组该位置的元素,table 虽然使用了 volatile 修饰,但是 volatile 并不能提供数组内部操作的可见性保证,所以源码中使用了 UNSAFE 来操作数组,请看方法 setEntryAt。2、如果要删除的节点不是头结点,它会将要删除节点的后继节点接到前驱节点中,这里的并发保证就是 next 属性是 volatile 的。 3. ## Java8 ConcurrentHashMap ## Java7 中实现的 ConcurrentHashMap 说实话还是比较复杂的,Java8 对 ConcurrentHashMap 进行了比较大的改动。建议读者可以参考 Java8 中 HashMap 相对于 Java7 HashMap 的改动,对于 ConcurrentHashMap,Java8 也引入了红黑树。 说实话,Java8 ConcurrentHashMap 源码真心不简单,最难的在于扩容,数据迁移操作不容易看懂。 我们先用一个示意图来描述下其结构: ![4][] 结构上和 Java8 的 HashMap 基本上一样,不过它要保证线程安全性,所以在源码上确实要复杂一些。 [1]: /images/20220224/37e94da398ba482e9d114d485eb7887c.png [2]: /images/20220224/054775153c5e43dd84d6119e39855e40.png [3]: /images/20220224/785fd16f9d1649c38257a8e9709dbb44.png [4]: /images/20220224/3a837df60cdc4385967d5ac8448f8aac.png
还没有评论,来说两句吧...