发表评论取消回复
相关阅读
相关 81.箱编号连续处理
/ 我现在在做一个包装方面的程序,数据表table是这样设计的: 产品号,产品名,箱号,箱如仓时,就记录箱的编号, 现在要求做如下报表:如果A
相关 Pandas-高级处理(八):数据离散化【pandas.cut:根据指定分界点对连续数据进行分箱处理】【pandas.qcut:指定箱子的数量对连续数据进行等宽分箱处理】【get_dummies】
Python实现连续数据的离散化处理主要基于两个函数:pandas.cut和pandas.qcut,pandas.cut根据指定分界点对连续数据进行分箱处理,pandas.qc
相关 pandas数据离散化pandas.cut()和pandas.qcut()
pandas数据离散化 > 什么叫数据离散化?也可以理解为数据分组。举个简单的例子,我们有一组学生成绩的数据,我们可以将数据按照成绩的最大值和最小值划分为几个相同的区间。
相关 利用STL离散化处理数据(unique)
0x00 使用说明 离散化可以很好的减小空间复杂的度, 它适用于数据中有大量重复的值(或则数据之间跨度特别大), 使用时可以只需要其中一个。
相关 Pandas数据离散化
为什么要离散化 连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具 扔掉一些信息,可以让模型
相关 Day4.利用Pandas做数据处理
Pandas 是基于NumPy 基于 NumPy 构建的含有更高级数据结构和分析能力的工具包,提供了大量能使我们快速便捷地处理数据的函数和方法。 ![format_png][
相关 机器学习处理离散数据_机器学习处理数据为什么把连续性特征离散化,离散化有何好处?...
在机器学习中,很多人在处理数据的时候,经常把连续性特征离散化。为此挺好奇,为什么要这么做,什么情况下才要做呢。 一、离散化原因 数据离散化是指将连续的数据进行分段,使其变
相关 数据预处理的分箱操作
介绍 我们在建立模型前,一般需要对特征变量进行离散化,特征离散化后,模型会更稳定,降低模型过拟合的风险。尤其是采用 logsitic 建立评分卡模型时,必须对连续变量进行
相关 利用pandas实现连续数据的离散化处理(分箱操作)
Python实现连续数据的离散化处理主要基于两个函数,pandas.cut和pandas.qcut,前者根据指定分界点对连续数据进行分箱处理,后者则可以根据指定箱子的数量对连续
相关 pandas之数据处理操作
1、pandas对缺失数据的处理 我们的数据缺失通常有两种情况: 1、一种就是空,None等,在pandas是NaN(和np.nan一样)
还没有评论,来说两句吧...