发表评论取消回复
相关阅读
相关 信息熵和决策树
在预测分析领域,决策树是可应用于回归和分类任务的算法之一 决策树背后的想法是,根据数据集中的特征对当时响应变量的贡献方式,递归地构建一个颠倒的树状结构。 在每次迭代中,将以
相关 【机器学习】决策树算法理论:算法原理、信息熵、信息增益、预剪枝、后剪枝、算法选择
1. 决策树概念 通过不断的划分条件来进行分类,决策树最关键的是找出那些对结果影响最大的条件,放到前面。 我举个列子来帮助大家理解,我现在给我女儿介绍了一个相亲对象,她
相关 机器学习实战之决策树算法笔记
简介 决策树类似于下图这种if-then 结构的判断算法。 ![1624355-20190811161504072-766229775.png][] 必要的数学概
相关 机器学习之决策树算法
1-1 基本流程 决策树是一个有监督分类与回归算法。 决策树的生成只考虑局部最优,相对的,决策树剪枝则考虑全局最优。 一、概念: 决策树:是一种树形结构,其中每个
相关 机器学习算法详解之决策树(二)
目录 生成决策树模型的递归什么时候停止 如果让递归一直持续下去 剪枝处理 前剪枝 后剪枝 样本数据的处理 离散化 缺失值处理 回顾经典决策树CART、ID3
相关 机器学习算法详解之决策树(一)
目录 决策树是什么不解释了直接上树 决策树的特点 1.可以处理非线性问题 2.可解释性强,可以树状图形化表示,直观好理解 3.模型推理简单效率极高 4.缺点是不容
相关 【原创】机器学习算法之:决策树
机器学习算法之:决策树 作者:jmz (360电商技术) 1 概览 决策树学习是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示
相关 机器学习算法——决策树
搬运工: 原理:[https://blog.csdn.net/liqiutuoyuan/article/details/77245738][https_blog.csdn.n
相关 机器学习之决策树
决策树 【关键词】树,熵,信息增益 决策树的优缺点 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。既能用于分类,也能用
相关 机器学习之决策树熵&信息增量求解算法实现
此文不对理论做相关阐述,仅涉及代码实现: 1.熵计算公式: P为正例,Q为反例 Entropy(S) = -PLog2(P) - QLog2(Q); 2.信息增量计算:
还没有评论,来说两句吧...