发表评论取消回复
相关阅读
相关 卷积神经网络之(深度卷积神经网络)AlexNet
卷积神经网络之AlexNet 2012年AlexNet横空出世,赢得了ImageNet2012图像识别挑战赛。首次证明了学习到的特征可以超越手工设计的特征。 Alex
相关 深度学习笔记_卷积神经网络参数计算
卷积后卷积层大小 W2= (W1-F+2P)/S +1 即 (原始图像的宽度-卷积核的宽度+2倍的填充宽度)/步长 + 1 采用K个大小为FxF的卷积核
相关 FCN:全卷积网络
FCN(Fully Convolutional Networks)是深度学习应用在图像分割的代表作,是一种端到端(end to end)的图像分割方法,让网络做像素级别的预测直
相关 深度学习笔记1(卷积神经网络)
深度学习笔记1(卷积神经网络) 在看完了UFLDL教程之后,决定趁热打铁,继续深度学习的学习,主要想讲点卷积神经网络,卷积神经网络是深度学习的模型之一,还有其它如Auto
相关 深度学习:卷积神经网络CNN
http://[blog.csdn.net/pipisorry/article/details/76571670][blog.csdn.net_pipisorry_articl
相关 全卷积网络 FCN 详解
背景 CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题。神经网络大神Jonathan Long发表了《Fully Con
相关 深度学习笔记(基础篇)——(六)全卷积神经网络(FCN)
通常CNN在卷积层之后会接上若干个全连接层,将卷积层产生的特征图(Feature Map)映射成一个固定长度的特征向量进行分类。以AlexNet为代表的经典CNN结构适
相关 深度学习笔记(基础篇)——(五)卷积神经网络
卷积神经网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者其他形式的变形具有高度不变性。这些良好的性能是网络在有监督方式下学会的,网
还没有评论,来说两句吧...