发表评论取消回复
相关阅读
相关 深度学习算法优化系列一 | ICLR 2017《Pruning Filters for Efficient ConvNets》
![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 《HRank:Filter Pruning using High-Rank Feature Map》论文笔记
代码地址: 1. [HRank][] 2. [HRankPlus][] 1. 概述 > 导读:卷积网络的剪裁对于模型部署到终端机上具有很强的实际意义,但是现有的一
相关 论文品读:Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures
[http://cn.arxiv.org/abs/1607.03250][http_cn.arxiv.org_abs_1607.03250] 文章介绍了一种新的评价参数是否需
相关 论文品读:Pruning filters for effecient convnets
[https://arxiv.org/abs/1608.08710][https_arxiv.org_abs_1608.08710] 本文提出了一种基于L1的通道裁剪的方法,
相关 《Pruning Filters for Efficient Convnets》论文笔记
1. 概述 CNN网络经被在众多方面展现了其成功,但是随之而来的是巨大的计算量与参数存储空间。这篇论文中给出一种剪除卷积滤波器的方法(确实会影响精度),但是移除这些滤波器
相关 论文品读:Pruning Convolutional Neural Networks for Resource Efficient Inference
模型裁剪系列相关论文品读博客: 1.论文品读:Learning both Weights and Connections for Efficient Neural Ne
相关 《Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks》论文笔记
1. 概述 这篇文章中给出了一种叫作SFP(Soft Filter Pruning),它具有如下两点优点: 1)Larger model capacity。相比直接剪
相关 《Building Efficient ConvNets using Redundant Feature Pruning》论文笔记
1. 概述 一般在做模型的时候开始最关心的是模型的性能,也就是模型的精度,我们可以增加网络的宽度与深度,来不断增加模型的表达能力。在精度达标之后,网络也变地很臃肿了,其实
相关 《Learning to Prune Filters in Convolutional Neural Networks》论文笔记
1. 概述 这篇文章提出了一种“try-and-learn”的算法去训练pruning agent,并用它使用数据驱动的方式去移除CNN网络中多余的filters。借助新
相关 论文品读:Stability Based Filter Pruning for Accelerating Deep CNNs
2018年的论文,提出了一种新的评价卷积核重要程度的方式。 主要思想是比较改变损失函数前后训练得到的两套参数,如果某个位置的参数改变的幅度大,就认为该参数是敏感的不稳定的,那
还没有评论,来说两句吧...