发表评论取消回复
相关阅读
相关 人工智能-损失函数-优化算法:普通梯度下降算法【BGD(批量梯度下降法)、SGD(随机梯度下降)、MBGD(小批量梯度下降法)】
人工智能-机器学习-损失函数-优化方法:普通梯度下降算法 一、损失函数 二、梯度下降法求解损失函数极小值 1、损失函数 J ( θ 0 , θ 1
相关 梯度下降:全梯度下降算法(FG)、随机梯度下降算法(SG)、小批量梯度下降算法(mini-batch)、随机平均梯度下降算法(SAG)。梯度下降法算法比较和进一步优化。
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 【Pytorch】梯度下降算法
梯度下降算法 1. 梯度 2. 梯度下降与梯度上升 3. 梯度下降法算法详解 3.1 梯度下降算法的具象解释 3.2 需了解的
相关 梯度下降,随机梯度下降
[梯度下降(Gradient Descent)完整篇][Gradient Descent]转载 在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient
相关 新手入门:梯度下降算法
梯度下降算法,它主要的实现功能,是一个优化算法,通过给出的实例来不断逼近某个模型。 例如用下山的例子来解释梯度下降算法,我们要最快速的下山,第一个是找到最陡的坡,第二个是迈出
相关 梯度下降 算法
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 【学习笔记】梯度下降算法
梯度下降算法 刚刚开始接触机器学习。线性回归可定义到给出一堆数据,预测一条直线。根据这条直线来预测未来的趋势。 根据线性回归,可知有直接计算的方法计算theta,也可
还没有评论,来说两句吧...