797. All Paths From Source to Target
/*
Given a directed, acyclic graph of N nodes. Find all possible paths from node 0 to node N-1, and return them in any order.
The graph is given as follows: the nodes are 0, 1, …, graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input: [[1,2], [3], [3], []]
Output: [[0,1,3],[0,2,3]]
Explanation: The graph looks like this:
0—->1
| |
v v
2—->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
The number of nodes in the graph will be in the range \[2, 15\].
You can print different paths in any order, but you should keep the order of nodes inside one path.
*/
class Solution {
public List
public List<List<Integer>> allPathsSourceTarget(int\[\]\[\] graph) \{
List<List<Integer>> g = new ArrayList<List<Integer>>();
List<Integer> path = new ArrayList<Integer>();
path.add(0);
DFS(graph,0,g,path);
return g;
\}
public void DFS(int\[\]\[\] graph, Integer node, List<List<Integer>> g, List<Integer> path)\{
if(node==graph.length-1)\{
g.add(new ArrayList<Integer>(path));
return;
\}
for(int nextNode:graph\[node\])\{
path.add(nextNode);
DFS(graph, nextNode, g, path);
path.remove(path.size()-1);
\}
\}
}
还没有评论,来说两句吧...