【数据结构】布隆过滤器

小咪咪 2022-05-25 08:19 212阅读 0赞

发表评论

表情:
评论列表 (有 0 条评论,212人围观)

还没有评论,来说两句吧...

相关阅读

    相关 数据结构过滤器

    布隆过滤器 如果要经常判断某个元素是否存在,你会怎么做?很容易想到使用哈希表(HashSet、HashMap),将元素作为key去查找。时间复杂度为O(1),但是空间利用

    相关 过滤器

    布隆过滤器 什么是布隆过滤器? 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的`二进制向量`和`一系列随机映射函数`。布

    相关 过滤器

    布隆过滤器实际上就是哈希和位图的结合 它的优点:速度快并且节省空间 它的缺点:存在误判(比如存在不同的字符串可能存在相同的ASCII,这样我们在判断的时候就会出现误判)

    相关 数据结构过滤器

    布隆过滤器 原理   如果要判断一个数是不是在一个集合里,一半想到的是将所有的元素保存起来,然后通过比较确定。但是随着集合中元素的增加,需要的存储空间越来越大,检索

    相关 过滤器

    布隆过滤器介绍 > 布隆过滤器在wiki上的介绍: 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布

    相关 过滤器

    布隆过滤器常常被用来检测某个元素是否是巨量数据集合中的成员 1、基本原理: (1)将长度为m的位数组元素全部置为0; (2)对集合S中的某个成员a,分别用k个哈希函数对其