用Tensorflow实现卷积神经网络CNN

一时失言乱红尘 2022-05-26 23:43 414阅读 0赞

一、数据准备

实验数据使用MNIST数据集。
MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”。

在很多tensorflow教程中,用下面这一句下载mnist数据集:

  1. mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

但实际运行时根本无法通过网络下载,解决方案就是手工下载数据,然后直接导入使用。

下载地址:http://yann.lecun.com/exdb/mnist/
4个文件,注意下载后不需要解压。

如果把上述下载的文件放在与运行的.py文件同一个目录下,那么导入数据的代码是这样的:

  1. mnist = input_data.read_data_sets('./', one_hot=True)

二、代码

  1. import tensorflow as tf
  2. from tensorflow.examples.tutorials.mnist import input_data
  3. # number 1 to 10 data
  4. mnist = input_data.read_data_sets('./', one_hot=True)
  5. def compute_accuracy(v_xs, v_ys):
  6. global prediction
  7. y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
  8. correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
  9. accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  10. result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
  11. return result
  12. # 产生随机变量,符合 normal 分布
  13. # 传递 shape 就可以返回weight和bias的变量
  14. def weight_variable(shape):
  15. initial = tf.truncated_normal(shape, stddev=0.1)
  16. return tf.Variable(initial)
  17. def bias_variable(shape):
  18. initial = tf.constant(0.1, shape=shape)
  19. return tf.Variable(initial)
  20. # 定义2维的 convolutional 图层
  21. def conv2d(x, W):
  22. # stride [1, x_movement, y_movement, 1]
  23. # Must have strides[0] = strides[3] = 1
  24. # strides 就是跨多大步抽取信息
  25. return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
  26. # 定义 pooling 图层
  27. def max_pool_2x2(x):
  28. # stride [1, x_movement, y_movement, 1]
  29. # 用pooling对付跨步大丢失信息问题
  30. return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
  31. # define placeholder for inputs to network
  32. xs = tf.placeholder(tf.float32, [None, 784]) # 784=28x28
  33. ys = tf.placeholder(tf.float32, [None, 10])
  34. keep_prob = tf.placeholder(tf.float32)
  35. x_image = tf.reshape(xs, [-1, 28, 28, 1]) # 最后一个1表示数据是黑白的
  36. # print(x_image.shape) # [n_samples, 28,28,1]
  37. ## 1. conv1 layer ##
  38. # 把x_image的厚度1加厚变成了32
  39. W_conv1 = weight_variable([5, 5, 1, 32]) # patch 5x5, in size 1, out size 32
  40. b_conv1 = bias_variable([32])
  41. # 构建第一个convolutional层,外面再加一个非线性化的处理relu
  42. h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
  43. # 经过pooling后,长宽缩小为14x14
  44. h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32
  45. ## 2. conv2 layer ##
  46. # 把厚度32加厚变成了64
  47. W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
  48. b_conv2 = bias_variable([64])
  49. # 构建第二个convolutional层
  50. h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
  51. # 经过pooling后,长宽缩小为7x7
  52. h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64
  53. ## 3. func1 layer ##
  54. # 飞的更高变成1024
  55. W_fc1 = weight_variable([7*7*64, 1024])
  56. b_fc1 = bias_variable([1024])
  57. # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
  58. # 把pooling后的结果变平
  59. h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
  60. h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
  61. h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
  62. ## 4. func2 layer ##
  63. # 最后一层,输入1024,输出size 10,用 softmax 计算概率进行分类的处理
  64. W_fc2 = weight_variable([1024, 10])
  65. b_fc2 = bias_variable([10])
  66. prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
  67. # the error between prediction and real data
  68. cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
  69. reduction_indices=[1])) # loss
  70. train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
  71. sess = tf.Session()
  72. # important step
  73. sess.run(tf.global_variables_initializer())
  74. for i in range(1000):
  75. batch_xs, batch_ys = mnist.train.next_batch(100)
  76. sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
  77. if i % 50 == 0:
  78. print(compute_accuracy(
  79. mnist.test.images, mnist.test.labels))

运行结果:

result.png

三、Github代码下载

下载

四、参考

http://v.youku.com/v_show/id_XMTYyMTUyMjc0OA==.html?spm=a2hzp.8253869.0.0

https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf18_CNN3

https://www.jianshu.com/p/e2f62043d02b

https://blog.csdn.net/i8088/article/details/79126150

更多内容请关注微信公众号
wechat\_public.jpg

发表评论

表情:
评论列表 (有 0 条评论,414人围观)

还没有评论,来说两句吧...

相关阅读

    相关 神经网络CNN

    系列文章目录 上一篇文章简单的介绍了卷积神经网络及一些基础知识,比如说步长,填充,互相关运算等,这篇文章讲介绍卷积神经网络的组成及常见的几种神经网络。  [CNN简单介