3.2 二叉查找树 小灰灰 2022-06-09 10:29 172阅读 0赞 > 3.2 Binary Search Trees > [http://algs4.cs.princeton.edu/32bst/][http_algs4.cs.princeton.edu_32bst] ### 基本实现 ### * 数据表示 * 查找 ![这里写图片描述][SouthEast] * 插入 ![这里写图片描述][SouthEast 1] * 递归 * 最大键最小键 * 向上取整向下取整 ![这里写图片描述][SouthEast 2] * 选择操作 ![这里写图片描述][SouthEast 3] * 删除最大值和最小值 ![这里写图片描述][SouthEast 4] * 删除操作 ![这里写图片描述][SouthEast 5] * 范围查找 /****************************************************************************** * Compilation: javac BST.java * Execution: java BST * Dependencies: StdIn.java StdOut.java Queue.java * Data files: http://algs4.cs.princeton.edu/32bst/tinyST.txt * * A symbol table implemented with a binary search tree. * * % more tinyST.txt * S E A R C H E X A M P L E * * % java BST < tinyST.txt * A 8 * C 4 * E 12 * H 5 * L 11 * M 9 * P 10 * R 3 * S 0 * X 7 * ******************************************************************************/ import java.util.NoSuchElementException; public class BST<Key extends Comparable<Key>, Value> { private Node root; // root of BST private class Node { private Key key; // sorted by key private Value val; // associated data private Node left, right; // left and right subtrees private int size; // number of nodes in subtree public Node(Key key, Value val, int size) { this.key = key; this.val = val; this.size = size; } } /** * Initializes an empty symbol table. */ public BST() { } /** * Returns true if this symbol table is empty. * @return {@code true} if this symbol table is empty; {@code false} otherwise */ public boolean isEmpty() { return size() == 0; } /** * Returns the number of key-value pairs in this symbol table. * @return the number of key-value pairs in this symbol table */ public int size() { return size(root); } // return number of key-value pairs in BST rooted at x private int size(Node x) { if (x == null) return 0; else return x.size; } /** * Does this symbol table contain the given key? * * @param key the key * @return {@code true} if this symbol table contains {@code key} and * {@code false} otherwise * @throws IllegalArgumentException if {@code key} is {@code null} */ public boolean contains(Key key) { if (key == null) throw new IllegalArgumentException("argument to contains() is null"); return get(key) != null; } /** * Returns the value associated with the given key. * * @param key the key * @return the value associated with the given key if the key is in the symbol table * and {@code null} if the key is not in the symbol table * @throws IllegalArgumentException if {@code key} is {@code null} */ public Value get(Key key) { return get(root, key); } private Value get(Node x, Key key) { if (key == null) throw new IllegalArgumentException("called get() with a null key"); if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp < 0) return get(x.left, key); else if (cmp > 0) return get(x.right, key); else return x.val; } /** * Inserts the specified key-value pair into the symbol table, overwriting the old * value with the new value if the symbol table already contains the specified key. * Deletes the specified key (and its associated value) from this symbol table * if the specified value is {@code null}. * * @param key the key * @param val the value * @throws IllegalArgumentException if {@code key} is {@code null} */ public void put(Key key, Value val) { if (key == null) throw new IllegalArgumentException("calledput() with a null key"); if (val == null) { delete(key); return; } root = put(root, key, val); assert check(); } private Node put(Node x, Key key, Value val) { if (x == null) return new Node(key, val, 1); int cmp = key.compareTo(x.key); if (cmp < 0) x.left = put(x.left, key, val); else if (cmp > 0) x.right = put(x.right, key, val); else x.val = val; x.size = 1 + size(x.left) + size(x.right); return x; } /** * Removes the smallest key and associated value from the symbol table. * * @throws NoSuchElementException if the symbol table is empty */ public void deleteMin() { if (isEmpty()) throw new NoSuchElementException("Symbol table underflow"); root = deleteMin(root); assert check(); } private Node deleteMin(Node x) { if (x.left == null) return x.right; x.left = deleteMin(x.left); x.size = size(x.left) + size(x.right) + 1; return x; } /** * Removes the largest key and associated value from the symbol table. * * @throws NoSuchElementException if the symbol table is empty */ public void deleteMax() { if (isEmpty()) throw new NoSuchElementException("Symbol table underflow"); root = deleteMax(root); assert check(); } private Node deleteMax(Node x) { if (x.right == null) return x.left; x.right = deleteMax(x.right); x.size = size(x.left) + size(x.right) + 1; return x; } /** * Removes the specified key and its associated value from this symbol table * (if the key is in this symbol table). * * @param key the key * @throws IllegalArgumentException if {@code key} is {@code null} */ public void delete(Key key) { if (key == null) throw new IllegalArgumentException("called delete() with a null key"); root = delete(root, key); assert check(); } private Node delete(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp < 0) x.left = delete(x.left, key); else if (cmp > 0) x.right = delete(x.right, key); else { if (x.right == null) return x.left; if (x.left == null) return x.right; Node t = x; x = min(t.right); x.right = deleteMin(t.right); x.left = t.left; } x.size = size(x.left) + size(x.right) + 1; return x; } /** * Returns the smallest key in the symbol table. * * @return the smallest key in the symbol table * @throws NoSuchElementException if the symbol table is empty */ public Key min() { if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table"); return min(root).key; } private Node min(Node x) { if (x.left == null) return x; else return min(x.left); } /** * Returns the largest key in the symbol table. * * @return the largest key in the symbol table * @throws NoSuchElementException if the symbol table is empty */ public Key max() { if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table"); return max(root).key; } private Node max(Node x) { if (x.right == null) return x; else return max(x.right); } /** * Returns the largest key in the symbol table less than or equal to {@code key}. * * @param key the key * @return the largest key in the symbol table less than or equal to {@code key} * @throws NoSuchElementException if there is no such key * @throws IllegalArgumentException if {@code key} is {@code null} */ public Key floor(Key key) { if (key == null) throw new IllegalArgumentException("argument to floor() is null"); if (isEmpty()) throw new NoSuchElementException("called floor() with empty symbol table"); Node x = floor(root, key); if (x == null) return null; else return x.key; } private Node floor(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp == 0) return x; if (cmp < 0) return floor(x.left, key); Node t = floor(x.right, key); if (t != null) return t; else return x; } /** * Returns the smallest key in the symbol table greater than or equal to {@code key}. * * @param key the key * @return the smallest key in the symbol table greater than or equal to {@code key} * @throws NoSuchElementException if there is no such key * @throws IllegalArgumentException if {@code key} is {@code null} */ public Key ceiling(Key key) { if (key == null) throw new IllegalArgumentException("argument to ceiling() is null"); if (isEmpty()) throw new NoSuchElementException("called ceiling() with empty symbol table"); Node x = ceiling(root, key); if (x == null) return null; else return x.key; } private Node ceiling(Node x, Key key) { if (x == null) return null; int cmp = key.compareTo(x.key); if (cmp == 0) return x; if (cmp < 0) { Node t = ceiling(x.left, key); if (t != null) return t; else return x; } return ceiling(x.right, key); } /** * Return the kth smallest key in the symbol table. * * @param k the order statistic * @return the {@code k}th smallest key in the symbol table * @throws IllegalArgumentException unless {@code k} is between 0 and * <em>n</em>–1 */ public Key select(int k) { if (k < 0 || k >= size()) { throw new IllegalArgumentException("called select() with invalid argument: " + k); } Node x = select(root, k); return x.key; } // Return key of rank k. private Node select(Node x, int k) { if (x == null) return null; int t = size(x.left); if (t > k) return select(x.left, k); else if (t < k) return select(x.right, k-t-1); else return x; } /** * Return the number of keys in the symbol table strictly less than {@code key}. * * @param key the key * @return the number of keys in the symbol table strictly less than {@code key} * @throws IllegalArgumentException if {@code key} is {@code null} */ public int rank(Key key) { if (key == null) throw new IllegalArgumentException("argument to rank() is null"); return rank(key, root); } // Number of keys in the subtree less than key. private int rank(Key key, Node x) { if (x == null) return 0; int cmp = key.compareTo(x.key); if (cmp < 0) return rank(key, x.left); else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); else return size(x.left); } /** * Returns all keys in the symbol table as an {@code Iterable}. * To iterate over all of the keys in the symbol table named {@code st}, * use the foreach notation: {@code for (Key key : st.keys())}. * * @return all keys in the symbol table */ public Iterable<Key> keys() { return keys(min(), max()); } /** * Returns all keys in the symbol table in the given range, * as an {@code Iterable}. * * @param lo minimum endpoint * @param hi maximum endpoint * @return all keys in the symbol table between {@code lo} * (inclusive) and {@code hi} (inclusive) * @throws IllegalArgumentException if either {@code lo} or {@code hi} * is {@code null} */ public Iterable<Key> keys(Key lo, Key hi) { if (lo == null) throw new IllegalArgumentException("first argument to keys() is null"); if (hi == null) throw new IllegalArgumentException("second argument to keys() is null"); Queue<Key> queue = new Queue<Key>(); keys(root, queue, lo, hi); return queue; } private void keys(Node x, Queue<Key> queue, Key lo, Key hi) { if (x == null) return; int cmplo = lo.compareTo(x.key); int cmphi = hi.compareTo(x.key); if (cmplo < 0) keys(x.left, queue, lo, hi); if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key); if (cmphi > 0) keys(x.right, queue, lo, hi); } /** * Returns the number of keys in the symbol table in the given range. * * @param lo minimum endpoint * @param hi maximum endpoint * @return the number of keys in the symbol table between {@code lo} * (inclusive) and {@code hi} (inclusive) * @throws IllegalArgumentException if either {@code lo} or {@code hi} * is {@code null} */ public int size(Key lo, Key hi) { if (lo == null) throw new IllegalArgumentException("first argument to size() is null"); if (hi == null) throw new IllegalArgumentException("second argument to size() is null"); if (lo.compareTo(hi) > 0) return 0; if (contains(hi)) return rank(hi) - rank(lo) + 1; else return rank(hi) - rank(lo); } /** * Returns the height of the BST (for debugging). * * @return the height of the BST (a 1-node tree has height 0) */ public int height() { return height(root); } private int height(Node x) { if (x == null) return -1; return 1 + Math.max(height(x.left), height(x.right)); } /** * Returns the keys in the BST in level order (for debugging). * * @return the keys in the BST in level order traversal */ public Iterable<Key> levelOrder() { Queue<Key> keys = new Queue<Key>(); Queue<Node> queue = new Queue<Node>(); queue.enqueue(root); while (!queue.isEmpty()) { Node x = queue.dequeue(); if (x == null) continue; keys.enqueue(x.key); queue.enqueue(x.left); queue.enqueue(x.right); } return keys; } /************************************************************************* * Check integrity of BST data structure. ***************************************************************************/ private boolean check() { if (!isBST()) StdOut.println("Not in symmetric order"); if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent"); if (!isRankConsistent()) StdOut.println("Ranks not consistent"); return isBST() && isSizeConsistent() && isRankConsistent(); } // does this binary tree satisfy symmetric order? // Note: this test also ensures that data structure is a binary tree since order is strict private boolean isBST() { return isBST(root, null, null); } // is the tree rooted at x a BST with all keys strictly between min and max // (if min or max is null, treat as empty constraint) // Credit: Bob Dondero's elegant solution private boolean isBST(Node x, Key min, Key max) { if (x == null) return true; if (min != null && x.key.compareTo(min) <= 0) return false; if (max != null && x.key.compareTo(max) >= 0) return false; return isBST(x.left, min, x.key) && isBST(x.right, x.key, max); } // are the size fields correct? private boolean isSizeConsistent() { return isSizeConsistent(root); } private boolean isSizeConsistent(Node x) { if (x == null) return true; if (x.size != size(x.left) + size(x.right) + 1) return false; return isSizeConsistent(x.left) && isSizeConsistent(x.right); } // check that ranks are consistent private boolean isRankConsistent() { for (int i = 0; i < size(); i++) if (i != rank(select(i))) return false; for (Key key : keys()) if (key.compareTo(select(rank(key))) != 0) return false; return true; } /** * Unit tests the {@code BST} data type. * * @param args the command-line arguments */ public static void main(String[] args) { BST<String, Integer> st = new BST<String, Integer>(); for (int i = 0; !StdIn.isEmpty(); i++) { String key = StdIn.readString(); st.put(key, i); } for (String s : st.levelOrder()) StdOut.println(s + " " + st.get(s)); StdOut.println(); for (String s : st.keys()) StdOut.println(s + " " + st.get(s)); } } [http_algs4.cs.princeton.edu_32bst]: http://algs4.cs.princeton.edu/32bst/ [SouthEast]: /images/20220609/6b78e2ea314f40a6ad9b737b0e9e8411.png [SouthEast 1]: /images/20220609/93bf37f27d77439ba2083158d7311b84.png [SouthEast 2]: /images/20220609/d7cd4fdf7888469cb9e80512f33bca8e.png [SouthEast 3]: /images/20220609/d3afc25f57ea469a8379d6fded6f02f5.png [SouthEast 4]: /images/20220609/a143aed7d39843118d202bc2f37552d6.png [SouthEast 5]: /images/20220609/a7a3737b455147cfb281a4a0707d904c.png
相关 leetcode——二叉树、二叉查找树 leetcode——二叉树、二叉查找树 104. 二叉树的最大深度 111. 二叉树的最小深度 226. 翻转二叉树 r囧r小猫/ 2022年09月05日 12:39/ 0 赞/ 255 阅读
相关 二叉查找树 二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现快速查找而生的。不过,它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。它是怎么做 港控/mmm°/ 2022年08月28日 03:51/ 0 赞/ 256 阅读
相关 二叉查找树 本文将会介绍一种能够将链表插入的灵活性和有序数组查找的高效性结合在一起的符号表实现。 定义 一颗二叉查找树(BST)是一颗二叉树,其中每个结点都含有一个Comparab 布满荆棘的人生/ 2022年07月16日 00:22/ 0 赞/ 229 阅读
相关 二叉查找树 package 树; /\\ \ 定义一个结点 \/ class Node\{ Node left = null; Node righ ╰+攻爆jí腚メ/ 2022年05月26日 07:49/ 0 赞/ 342 阅读
相关 二叉树(四)---查找二叉树 上次我说了如何去遍历一棵二叉树,今天我来说一说查找二叉树是怎样实现的。 首先我来介绍一下查找二叉树是怎样生成的。 这个是我为我的二叉树设置的一些基础的组成数据结构 深碍√TFBOYSˉ_/ 2022年05月25日 09:37/ 0 赞/ 278 阅读
相关 二叉查找树 <table> <tbody> <tr> <td> <p>package 树;</p> <p>import java.util.Stack;</p> <p>/ 我就是我/ 2022年05月13日 01:40/ 0 赞/ 278 阅读
相关 二叉查找树 二叉查找树 概念 二叉查找树,又称为二叉排序树、二叉搜索树。 二叉查找树有以下几个特性 若左子树不空,则左子树上所有结点的值均小于它的根结点的值 若 旧城等待,/ 2022年04月10日 02:39/ 0 赞/ 491 阅读
相关 二叉查找树 / 这是一个二叉查找树,实现了以下操作:插入结点、构造二叉树、删除结点、查找、 查找最大值、查找最小值、查找指定结点的前驱和后继。上述所有操作时 迈不过友情╰/ 2022年02月26日 11:48/ 0 赞/ 345 阅读
相关 二叉查找树 二叉查找树有这几个规则 1、若左子树不为空,那么左子树所有节点的值小于均小于他的根节点的值。 2、若右子树不为空,那么右子树的所有节点的值大于根节点的值。 3、左右子树也 ﹏ヽ暗。殇╰゛Y/ 2021年09月22日 09:40/ 0 赞/ 544 阅读
相关 二叉查找树 理解 在二叉树的基础上,假设一个节点值都为Integer类型,现在有一个节点A,那么A的左子树中的所有值一定小于A节点的值,A的右子树中的所有值一定大于A的节点的值,如果 清疚/ 2021年09月11日 06:56/ 0 赞/ 543 阅读
还没有评论,来说两句吧...