发表评论取消回复
相关阅读
相关 特征选择 Python代码
本文利用python实现RFE特征选择、基于树模型的特征选择、lasso回归特征选择、Chi2特征选择、特征间相关性进行特征选择、IV值特征选择,K-S值特征选择。并放到一个类
相关 树模型特征重要性,特征选择-原理
机器学习- 树模型特征重要性原理总结 https://blog.csdn.net/qq\_16236875/article/details/98307383 1.随机森
相关 xgboost特征选择
Xgboost在各[大数据][Link 1]挖掘比赛中是一个大杀器,往往可以取得比其他各种[机器学习][Link 2][算法][Link 3]更好的效果。数据预处理,特征工程,
相关 特征选择 GBDT 特征重要度
Tree ensemble算法的特征重要度计算 集成学习因具有预测精度高的优势而受到广泛关注,尤其是使用决策树作为基学习器的集成学习[算法][Link 1]。树的集成算法
相关 特征选择算法
(1) 什么是特征选择 特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择
相关 决策树-特征选择
决策树的特征选择标准有两种:信息增益,信息增益比 0.熵 指不稳定程度。熵越大,不稳定程度越高,则越容易分裂。决策树中也指某结点内含信息量较多,分类能力较差. 计算公式:
相关 Scikit中的特征选择,XGboost进行回归预测,模型优化的实战
前天偶然在一个网站上看到一个数据分析的比赛([sofasofa][]),自己虽然学习一些关于机器学习的内容,但是并没有在比赛中实践过,于是我带着一种好奇心参加了这次比赛。 >
相关 特征选择_过滤特征选择
一:方差选择法: 使用方差作为特征评分标准,如果某个特征的取值差异不大,通常认为该特征对区分样本的贡献度不大 因此在构造特征过程中去掉方差小于阈值特征 f
相关 机器学习 特征选择
链接:https://www.zhihu.com/question/28641663/answer/41653367 特征选择是特征工程中的重要问题(另一个重要的问题是
还没有评论,来说两句吧...