I have a date with Algorthim.

一时失言乱红尘 2022-06-17 05:25 240阅读 0赞

I have a date with Algorthim

寻找算法


  • 算法之旅第一步–分治
    分治

    • 基本定义:
  1. * 在计算机科学中, 分治法是一种很重要的算法.
  2. * 字面上的解释是”分而治之”, 就是把一个复杂的问题分成两个或多个(两个或两个以上)的相同或相似的子问题, 再把子问题分成更小的子问题 -> 直到最后子问题可以简单的直接求解, 原问题的解即子问题的解的合并.
  3. * 这个技巧是很多高效算法的基础, 如排序算法(快速排序,归并排序), 傅立叶变换(快速傅立叶变换)……
  4. * 任何一个可以用计算机求解的问题所需的计算时间都与其`规模`有关.
  5. * 问题的规模越小, 越容易直接求解, 解题所需的计算时间也越少.
  6. * 例如:
  7. * 对于n个元素的排序问题, n=1时, 不需任何计算.
  8. * n=2时, 只要作一次比较即可排好序.
  9. * n=3时只要作3次比较即可, .
  10. * 而当n较大时, 问题就不那么容易处理了.
  11. * 要想直接解决一个规模较大的问题, 有时是相当困难的.
  12. ![汉诺塔的问题][SouthEast 2]

  • 基本思想和策略:
  1. * 分治法的设计思想是:
  2. * 将一个难以直接解决的大问题, 分割成一些规模较小的相同问题, 以便各个击破, 分而治之.
  3. * 分治策略是:
  4. * 对于一个规模为n的问题, 若该问题可以容易地解决(比如说规模n较小)则直接解决, 否则将其分解为`k个规模较小的子问题`, 这些子问题`互相独立`且与`原问题形式相同`, 递归地解这些子问题,然后将各`子问题的解合并得到原问题的解`. 这种算法设计策略叫分治法.
  5. * 如果原问题可分割成k个子问题, `1<k≤n`, 且这些`子问题都可解`并可`利用这些子问题的解求出原问题的解`,那么这种分治法就是可行的.
  6. * 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便.
  7. * 在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解. ->这自然导致递归过程的产生.
  8. * `分治``递归`像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法.
  9. ![忘不了的PPT首页][PPT]

  • 分治法的统治领域:
  1. * 分治法所能解决的问题一般具有以下几个特征:
  2. * a. 该问题的规模`缩小到一定的程度`就可以`容易地解决`;
  3. * b. 该问题可以分解为`若干个规模较小的相同问题`,即该问题具有`最优子结构性质`;
  4. * c. 利用该问题分解出的`子问题的解可以合并为该原问题的解`;
  5. * d. 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题.
  6. * 第一条特征是绝大多数问题都可以满足的, 因为问题的计算复杂性一般是随着问题规模的增加而增加;
  7. * 第二条特征是应用分治法的前提它也是大多数问题可以满足的, 此特征反映了`递归思想`的应用;
  8. * 第三条特征是关键, 能否利用分治法完全取决于问题是否具有第三条特征, 如果具备了第一条和第二条特征, 而不具备第三条特征, 则可以考虑用`贪心法``动态规划法`.
  9. * 第四条特征涉及到分治法的效率, 如果各子问题是不独立的则分治法要做许多不必要的工作, 重复地解公共的子问题, 此时虽然可用分治法, 但一般用动态规划法较好.

  • 分治法的解析步骤:

    • 分治法在每一层递归上都有三个步骤:
  1. * step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
  2. * step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
  3. * step3 合并:将各个子问题的解合并为原问题的解.
  4. * 它的一般的算法设计模式如下:
  5. Divide-and-Conquer(P)
  6. 1. if |P|≤n0
  7. 2. then return(ADHOC(P))
  8. 3. P分解为较小的子问题 P1 ,P2 ,...,Pk
  9. 4. for i1 to k
  10. 5. do yi Divide-and-Conquer(Pi) 递归解决Pi
  11. 6. T MERGE(y1,y2,...,yk) 合并子问题
  12. 7. return(T)
  13. * 其中`|P|`表示问题`P的规模`;
  14. * `n0`为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解.
  15. * `ADHOC(P)`是该分治法中的基本子算法,用于直接解小规模的问题P.
  16. * 因此,当P的规模不超过n0时直接用算法ADHOC(P)求解.
  17. * 算法`MERGE(y1,y2,...,yk)`是该分治法中的合并子算法,用于将P的子问题`P1 ,P2 ,...,Pk`的相应的解`y1,y2,...,yk`合并为P的解.

  • 分治法的复杂性分析:
  1. * 一个分治法将规模为n的问题分成`k个规模为n/m的子问题`去解.
  2. * 设分解阀值`n0=1`, `adhoc`解规模为1的问题耗费1个单位时间.
  3. * 再设将原问题分解为k个子问题以及用mergek个子问题的解合并为原问题的解需用f(n)个单位时间.
  4. * T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:
  5. * `T(n)= k*T(n/m)+f(n)`
  6. * 通过迭代法求得方程的解:
  7. * 递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度.
  8. * 通常假定T(n)是单调上升的,从而当`mi≤n<mi+1`时,`T(mi)≤T(n)<T(mi+1)`.

  • 分治法的思维过程:
  1. * 实际上就是类似于`数学归纳法`,找到`解决本问题的求解方程公式`,然后根据`方程公式设计递归程序`.
  2. * 1、一定是先找到`最小问题规模时`的求解方法;(数学归纳法的初始值已知(n = 0; 函数方程的值))
  3. * 2、然后考虑随着问题规模增大时的求解方法;(数学归纳法的n = n-1时的函数值).
  4. * 3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可.(根据n = 0 -> n = n-1的函数变化过程得到n = n的值, 从而得出函数的解).

JackDan9 Thinking.
《Algorthim》Book.

发表评论

表情:
评论列表 (有 0 条评论,240人围观)

还没有评论,来说两句吧...

相关阅读