【lightoj1307】Counting Triangles

﹏ヽ暗。殇╰゛Y 2022-07-17 01:43 151阅读 0赞

J - J 圆周率用acos(-1.0) 使用longlong

Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu

Submit Status Practice LightOJ 1307 12x12_uDebug.pnguDebug

Description

You are given N sticks having distinct lengths; you have to form some triangles using the sticks. A triangle is valid if its area is positive. Your task is to find the number of ways you can form a valid triangle using the sticks.

Input

Input starts with an integer T (≤ 10), denoting the number of test cases.

Each case starts with a line containing an integer N (3 ≤ N ≤ 2000). The next line contains N integers denoting the lengths of the sticks. You can assume that the lengths are distinct and each length lies in the range [1, 109].

Output

For each case, print the case number and the total number of ways a valid triangle can be formed.

Sample Input

3

5

3 12 5 4 9

6

1 2 3 4 5 6

4

100 211 212 121

Sample Output

Case 1: 3

Case 2: 7

Case 3: 4

比赛时没TLE豁然开朗,原来用二分可以轻松解决超时问题,看来二分更多的时候是用来优化程序的,我喜欢这种题。

  1. #include<cstdio>
  2. #include<iostream>
  3. #include<cmath>
  4. #include<cstring>
  5. #include<algorithm>
  6. using namespace std;
  7. int a[2005];
  8. bool judge(int mid,int i,int j) {
  9. if(a[i]+a[j]>a[mid]&&a[mid]-a[i]<a[j]) {
  10. return true;
  11. }
  12. return false;
  13. }
  14. int main() {
  15. int T,p=0;
  16. scanf("%d",&T);
  17. while(T--) {
  18. int n;
  19. scanf("%d",&n);
  20. for(int i=0; i<n; i++) {
  21. scanf("%d",&a[i]);
  22. }
  23. sort(a,a+n);
  24. int ans=0;
  25. for(int i=0; i<n; i++) {
  26. for(int j=i+1; j<n; j++) {
  27. int cnt=0;
  28. int l=j+1,r=n-1;
  29. while(l<=r) {
  30. int mid=l+r>>1;
  31. if(judge(mid,i,j)) {
  32. cnt=mid;
  33. l=mid+1;
  34. } else {
  35. r=mid-1;
  36. }
  37. }
  38. if(cnt)
  39. ans=ans+cnt-j;
  40. }
  41. }
  42. printf("Case %d: %d\n",++p,ans);
  43. }
  44. return 0;
  45. }

发表评论

表情:
评论列表 (有 0 条评论,151人围观)

还没有评论,来说两句吧...

相关阅读

    相关 Triangle Count 算法

    Triangle Count在社交网络分析中是非常有用的。这个三角形是一个三结点的小图,其中结点两两相连。假如,在Facebook上,你认识两个校友,而这两个校友彼此有相互认识