【lightoj1307】Counting Triangles
J - J 圆周率用acos(-1.0) 使用longlong
Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Submit Status Practice LightOJ 1307 uDebug
Description
You are given N sticks having distinct lengths; you have to form some triangles using the sticks. A triangle is valid if its area is positive. Your task is to find the number of ways you can form a valid triangle using the sticks.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case starts with a line containing an integer N (3 ≤ N ≤ 2000). The next line contains N integers denoting the lengths of the sticks. You can assume that the lengths are distinct and each length lies in the range [1, 109].
Output
For each case, print the case number and the total number of ways a valid triangle can be formed.
Sample Input
3
5
3 12 5 4 9
6
1 2 3 4 5 6
4
100 211 212 121
Sample Output
Case 1: 3
Case 2: 7
Case 3: 4
比赛时没TLE豁然开朗,原来用二分可以轻松解决超时问题,看来二分更多的时候是用来优化程序的,我喜欢这种题。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int a[2005];
bool judge(int mid,int i,int j) {
if(a[i]+a[j]>a[mid]&&a[mid]-a[i]<a[j]) {
return true;
}
return false;
}
int main() {
int T,p=0;
scanf("%d",&T);
while(T--) {
int n;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&a[i]);
}
sort(a,a+n);
int ans=0;
for(int i=0; i<n; i++) {
for(int j=i+1; j<n; j++) {
int cnt=0;
int l=j+1,r=n-1;
while(l<=r) {
int mid=l+r>>1;
if(judge(mid,i,j)) {
cnt=mid;
l=mid+1;
} else {
r=mid-1;
}
}
if(cnt)
ans=ans+cnt-j;
}
}
printf("Case %d: %d\n",++p,ans);
}
return 0;
}
还没有评论,来说两句吧...