MySQL5.6 PERFORMANCE_SCHEMA 说明
背景:
[MySQL][] 5.5开始新增一个数据库:PERFORMANCE\_SCHEMA,主要用于收集数据库服务器性能参数。并且库里表的存储引擎均为PERFORMANCE\_SCHEMA,而用户是不能创建存储引擎为PERFORMANCE\_SCHEMA的表。[MySQL][]5.5默认是关闭的,需要手动开启,在配置文件里添加:
view source print ?
1.
[mysqld]
2.
performance_schema=ON
查看是否开启:
view source print ?
1.
mysql>show variables like ``'performance_schema'``;
2.
+--------------------+-------+
3.
| Variable_name | Value |
4.
+--------------------+-------+
5.
| performance_schema | <strong>ON</strong> |
6.
+--------------------+-------+
从MySQL5.6开始,默认打开,本文就从MySQL5.6来说明,在数据库使用当中PERFORMANCE_SCHEMA的一些比较常用的功能。具体的信息可以查看官方文档。
相关表信息:
一:配置(setup)表:
view source print ?
01.
zjy``@performance_schema
10``:``16``:``56``>show tables like ``'%setup%'``;
02.
+----------------------------------------+
03.
| Tables_in_performance_schema (%setup%) |
04.
+----------------------------------------+
05.
| setup_actors |
06.
| setup_consumers |
07.
| setup_instruments |
08.
| setup_objects |
09.
| setup_timers |
10.
+----------------------------------------+
1,setup_actors:配置用户纬度的监控,默认监控所有用户。
view source print ?
1.
zjy``@performance_schema
10``:``19``:``11``>select * from setup_actors;
2.
+------+------+------+
3.
| HOST | USER | ROLE |
4.
+------+------+------+
5.
| % | % | % |
6.
+------+------+------+
2,setup_consumers:配置events的消费者类型,即收集的events写入到哪些统计表中。
view source print ?
01.
zjy@: performance_schema ``10``:``23``:``35``>select * from setup_consumers;
02.
+--------------------------------+---------+
03.
| NAME | ENABLED |
04.
+--------------------------------+---------+
05.
| events_stages_current | NO |
06.
| events_stages_history | NO |
07.
| events_stages_history_long | NO |
08.
| events_statements_current | YES |
09.
| events_statements_history | NO |
10.
| events_statements_history_long | NO |
11.
| events_waits_current | NO |
12.
| events_waits_history | NO |
13.
| events_waits_history_long | NO |
14.
| global_instrumentation | YES |
15.
| thread_instrumentation | YES |
16.
| statements_digest | YES |
17.
+--------------------------------+---------+
这里需要说明的是需要查看哪个就更新其ENABLED列为YES。如:
view source print ?
1.
zjy``@performance_schema
10``:``25``:``02``>update setup_consumers set ENABLED=``'YES'
where NAME in (``'events_stages_current'``,``'events_waits_current'``);
2.
Query OK, ``2
rows affected (``0.00
sec)
更新完后立即生效,但是服务器重启之后又会变回默认值,要永久生效需要在配置文件里添加:
view source print ?
1.
[mysqld]
2.
#performance_schema
3.
performance_schema_consumer_events_waits_current=on
4.
performance_schema_consumer_events_stages_current=on
5.
performance_schema_consumer_events_statements_current=on
6.
performance_schema_consumer_events_waits_history=on
7.
performance_schema_consumer_events_stages_history=on
8.
performance_schema_consumer_events_statements_history=on
即在这些表的前面加上:performance_schema_consumer_xxx。表setup_consumers里面的值有个层级关系:
view source print ?
1.
<strong>global_instrumentation</strong> > <strong>thread_instrumentation</strong> = <strong>statements_digest</strong> > events_stages_<strong>current</strong> = events_statements_current = events_waits_current > events_stages_<strong>history</strong> = events_statements_history = events_waits_history > events_stages_<strong>history_long</strong> = events_statements_history_long = events_waits_history_long
只有上一层次的为YES,才会继续检查该本层为YES or NO。global_instrumentation是最高级别consumer,如果它设置为NO,则所有的consumer都会忽略。其中history和history_long存的是current表的历史记录条数,history表记录了每个线程最近等待的10个事件,而history_long表则记录了最近所有线程产生的10000个事件,这里的10和10000都是可以配置的。这三个表表结构相同,history和history_long表数据都来源于current表。长度通过控制参数:
view source print ?
01.
zjy``@performance_schema
11``:``10``:``03``>show variables like ``'performance_schema%history%size'``;
02.
+--------------------------------------------------------+-------+
03.
| Variable_name | Value |
04.
+--------------------------------------------------------+-------+
05.
| performance_schema_events_stages_history_long_size | ``10000
|
06.
| performance_schema_events_stages_history_size | ``10
|
07.
| performance_schema_events_statements_history_long_size | ``10000
|
08.
| performance_schema_events_statements_history_size | ``10
|
09.
| performance_schema_events_waits_history_long_size | ``10000
|
10.
| performance_schema_events_waits_history_size | ``10
|
11.
+--------------------------------------------------------+-------+
3,setup_instruments:配置具体的instrument,主要包含4大类:idle、stage/xxx、statement/xxx、wait/xxx:
view source print ?
01.
zjy``@performance_schema
10``:``56``:``35``>select name,count(*) from setup_instruments group by LEFT(name,``5``);
02.
+---------------------------------+----------+
03.
| name | count(*) |
04.
+---------------------------------+----------+
05.
| idle | ``1
|
06.
| stage/sql/After create | ``111
|
07.
| statement/sql/select | ``179
|
08.
| wait/synch/mutex/sql/PAGE::lock | ``296
|
09.
+---------------------------------+----------+
idle表示socket空闲的时间,stage类表示语句的每个执行阶段的统计,statement类统计语句维度的信息,wait类统计各种等待事件,比如IO,mutux,spin_lock,condition等。
4,setup_objects:配置监控对象,默认对mysql,performance_schema和information_schema中的表都不监控,而其它DB的所有表都监控。
view source print ?
01.
zjy``@performance_schema
11``:``00``:``18``>select * from setup_objects;
02.
+-------------+--------------------+-------------+---------+-------+
03.
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
04.
+-------------+--------------------+-------------+---------+-------+
05.
| TABLE | mysql | % | NO | NO |
06.
| TABLE | performance_schema | % | NO | NO |
07.
| TABLE | information_schema | % | NO | NO |
08.
| TABLE | % | % | <strong>YES</strong> | <strong>YES</strong> |
09.
+-------------+--------------------+-------------+---------+-------+
5,setup_timers:配置每种类型指令的统计时间单位。MICROSECOND表示统计单位是微妙,CYCLE表示统计单位是时钟周期,时间度量与CPU的主频有关,NANOSECOND表示统计单位是纳秒。但无论采用哪种度量单位,最终统计表中统计的时间都会装换到皮秒。(1秒=1000000000000皮秒)
view source print ?
01.
zjy``@performance_schema
11``:``05``:``12``>select * from setup_timers;
02.
+-----------+-------------+
03.
| NAME | TIMER_NAME |
04.
+-----------+-------------+
05.
| idle | MICROSECOND |
06.
| wait | CYCLE |
07.
| stage | NANOSECOND |
08.
| statement | NANOSECOND |
09.
+-----------+-------------+
二:instance表
1,cond_instances:条件等待对象实例
表中记录了系统中使用的条件变量的对象,OBJECT_INSTANCE_BEGIN为对象的内存地址。
2,file_instances:文件实例
表中记录了系统中打开了文件的对象,包括ibdata文件,redo文件,binlog文件,用户的表文件等,open_count显示当前文件打开的数目,如果重来没有打开过,不会出现在表中。
view source print ?
01.
zjy``@performance_schema
11``:``20``:``04``>select * from file_instances limit ``2``,``5``;
02.
+---------------------------------+--------------------------------------+------------+
03.
| FILE_NAME | EVENT_NAME | <strong>OPEN_COUNT</strong> |
04.
+---------------------------------+--------------------------------------+------------+
05.
| /var/lib/mysql/mysql/plugin.frm | wait/io/file/sql/FRM | ``0
|
06.
| /var/lib/mysql/mysql/plugin.MYI | wait/io/file/myisam/kfile | ``1
|
07.
| /var/lib/mysql/mysql/plugin.MYD | wait/io/file/myisam/dfile | ``1
|
08.
| /var/lib/mysql/ibdata1 | wait/io/file/innodb/innodb_data_file | ``2
|
09.
| /var/lib/mysql/ib_logfile0 | wait/io/file/innodb/innodb_log_file | ``2
|
10.
+---------------------------------+--------------------------------------+------------+
3,mutex_instances:互斥同步对象实例
表中记录了系统中使用互斥量对象的所有记录,其中name为:wait/synch/mutex/*。LOCKED_BY_THREAD_ID显示哪个线程正持有mutex,若没有线程持有,则为NULL。
4,rwlock_instances: 读写锁同步对象实例
表中记录了系统中使用读写锁对象的所有记录,其中name为 wait/synch/rwlock/*。WRITE_LOCKED_BY_THREAD_ID为正在持有该对象的thread_id,若没有线程持有,则为NULL。READ_LOCKED_BY_COUNT为记录了同时有多少个读者持有读锁。(通过 events_waits_current 表可以知道,哪个线程在等待锁;通过rwlock_instances知道哪个线程持有锁。rwlock_instances的缺陷是,只能记录持有写锁的线程,对于读锁则无能为力)。
5,socket_instances:活跃会话对象实例
表中记录了thread_id,socket_id,ip和port,其它表可以通过thread_id与socket_instance进行关联,获取IP-PORT信息,能够与应用对接起来。
event_name主要包含3类:
wait/io/socket/sql/server_unix_socket,服务端unix监听socket
wait/io/socket/sql/server_tcpip_socket,服务端tcp监听socket
wait/io/socket/sql/client_connection,客户端socket
三:Wait表
1,events_waits_current:记录了当前线程等待的事件
2,events_waits_history:记录了每个线程最近等待的10个事件
3,events_waits_history_long:记录了最近所有线程产生的10000个事件
表结构定义如下:
view source print ?
01.
CREATE TABLE `events_waits_current` (
02.
`THREAD_ID` bigint(```20
) unsigned NOT NULL COMMENT '线程ID'
,`
03.
`EVENT_ID` bigint(```20
) unsigned NOT NULL COMMENT '当前线程的事件ID,和THREAD_ID确定唯一'
,`
04.
`END_EVENT_ID` bigint(```20
) unsigned DEFAULT NULL COMMENT '当事件开始时,这一列被设置为NULL。当事件结束时,再更新为当前的事件ID'
,`
05.
`EVENT_NAME` varchar(```128
) NOT NULL COMMENT '事件名称'
,`
06.
`SOURCE` varchar(```64
) DEFAULT NULL COMMENT '该事件产生时的源码文件'
,`
07.
`TIMER_START` bigint(```20
) unsigned DEFAULT NULL COMMENT '事件开始时间(皮秒)'
,`
08.
`TIMER_END` bigint(```20
) unsigned DEFAULT NULL COMMENT '事件结束结束时间(皮秒)'
,`
09.
`TIMER_WAIT` bigint(```20
) unsigned DEFAULT NULL COMMENT '事件等待时间(皮秒)'
,`
10.
`SPINS` ```int
(10
) unsigned DEFAULT NULL COMMENT ''
,`
11.
`OBJECT_SCHEMA` varchar(```64
) DEFAULT NULL COMMENT '库名'
,`
12.
`OBJECT_NAME` varchar(```512
) DEFAULT NULL COMMENT '文件名、表名、IP:SOCK值'
,`
13.
`OBJECT_TYPE` varchar(```64
) DEFAULT NULL COMMENT 'FILE、TABLE、TEMPORARY TABLE'
,`
14.
`INDEX_NAME` varchar(```64
) DEFAULT NULL COMMENT '索引名'
,`
15.
`OBJECT_INSTANCE_BEGIN` bigint(```20
) unsigned NOT NULL COMMENT '内存地址'
,`
16.
`NESTING_EVENT_ID` bigint(```20
) unsigned DEFAULT NULL COMMENT '该事件对应的父事件ID'
,`
17.
`NESTING_EVENT_TYPE` ```enum
('STATEMENT'
,'STAGE'
,'WAIT'
) DEFAULT NULL COMMENT '父事件类型(STATEMENT, STAGE, WAIT)'
,`
18.
`OPERATION` varchar(```32
) NOT NULL COMMENT '操作类型(lock, read, write)'
,`
19.
`NUMBER_OF_BYTES` bigint(```20
) DEFAULT NULL COMMENT ''
,`
20.
`FLAGS` ```int
(10
) unsigned DEFAULT NULL COMMENT `'标记'
21.
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8
四:Stage 表
1,events_stages_current:记录了当前线程所处的执行阶段
2,events_stages_history:记录了当前线程所处的执行阶段10条历史记录
3,events_stages_history_long:记录了当前线程所处的执行阶段10000条历史记录
表结构定义如下:
view source print ?
01.
CREATE TABLE `events_stages_current` (
02.
`THREAD_ID` bigint(```20
) unsigned NOT NULL COMMENT '线程ID'
,`
03.
`EVENT_ID` bigint(```20
) unsigned NOT NULL COMMENT '事件ID'
,`
04.
`END_EVENT_ID` bigint(```20
) unsigned DEFAULT NULL COMMENT '结束事件ID'
,`
05.
`EVENT_NAME` varchar(```128
) NOT NULL COMMENT '事件名称'
,`
06.
`SOURCE` varchar(```64
) DEFAULT NULL COMMENT '源码位置'
,`
07.
`TIMER_START` bigint(```20
) unsigned DEFAULT NULL COMMENT '事件开始时间(皮秒)'
,`
08.
`TIMER_END` bigint(```20
) unsigned DEFAULT NULL COMMENT '事件结束结束时间(皮秒)'
,`
09.
`TIMER_WAIT` bigint(```20
) unsigned DEFAULT NULL COMMENT '事件等待时间(皮秒)'
,`
10.
`NESTING_EVENT_ID` bigint(```20
) unsigned DEFAULT NULL COMMENT '该事件对应的父事件ID'
,`
11.
`NESTING_EVENT_TYPE` ```enum
('STATEMENT'
,'STAGE'
,'WAIT'
) DEFAULT NULL COMMENT `'父事件类型(STATEMENT, STAGE, WAIT)'
12.
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8
五:Statement 表
1,events_statements_current:通过 thread_id+event_id可以唯一确定一条记录。Statments表只记录最顶层的请求,SQL语句或是COMMAND,每条语句一行。event_name形式为statement/sql/*,或statement/com/*
2,events_statements_history
3,events_statements_history_long
表结构定义如下:
view source print ?
01.
CREATE TABLE `events_statements_current` (
02.
`THREAD_ID` bigint(```20
) unsigned NOT NULL COMMENT '线程ID'
,`
03.
`EVENT_ID` bigint(```20
) unsigned NOT NULL COMMENT '事件ID'
,`
04.
`END_EVENT_ID` bigint(```20
) unsigned DEFAULT NULL COMMENT '结束事件ID'
,`
05.
`EVENT_NAME` varchar(```128
) NOT NULL COMMENT '事件名称'
,`
06.
`SOURCE` varchar(```64
) DEFAULT NULL COMMENT '源码位置'
,`
07.
`TIMER_START` bigint(```20
) unsigned DEFAULT NULL COMMENT '事件开始时间(皮秒)'
,`
08.
`TIMER_END` bigint(```20
) unsigned DEFAULT NULL COMMENT '事件结束结束时间(皮秒)'
,`
09.
`TIMER_WAIT` bigint(```20
) unsigned DEFAULT NULL COMMENT '事件等待时间(皮秒)'
,`
10.
`LOCK_TIME` bigint(```20
) unsigned NOT NULL COMMENT '锁时间'
,`
11.
`SQL_TEXT` longtext COMMENT ```'记录SQL语句'
,`
12.
`DIGEST` varchar(```32
) DEFAULT NULL COMMENT '对SQL_TEXT做MD5产生的32位字符串'
,`
13.
`DIGEST_TEXT` longtext COMMENT ```'将语句中值部分用问号代替,用于SQL语句归类'
,`
14.
`CURRENT_SCHEMA` varchar(```64
) DEFAULT NULL COMMENT '默认的数据库名'
,`
15.
`OBJECT_TYPE` varchar(```64
) DEFAULT NULL COMMENT '保留字段'
,`
16.
`OBJECT_SCHEMA` varchar(```64
) DEFAULT NULL COMMENT '保留字段'
,`
17.
`OBJECT_NAME` varchar(```64
) DEFAULT NULL COMMENT '保留字段'
,`
18.
`OBJECT_INSTANCE_BEGIN` bigint(```20
) unsigned DEFAULT NULL COMMENT '内存地址'
,`
19.
`MYSQL_ERRNO` ```int
(11
) DEFAULT NULL COMMENT ''
,`
20.
`RETURNED_SQLSTATE` varchar(```5
) DEFAULT NULL COMMENT ''
,`
21.
`MESSAGE_TEXT` varchar(```128
) DEFAULT NULL COMMENT '信息'
,`
22.
`ERRORS` bigint(```20
) unsigned NOT NULL COMMENT '错误数目'
,`
23.
`WARNINGS` bigint(```20
) unsigned NOT NULL COMMENT '警告数目'
,`
24.
`ROWS_AFFECTED` bigint(```20
) unsigned NOT NULL COMMENT '影响的数目'
,`
25.
`ROWS_SENT` bigint(```20
) unsigned NOT NULL COMMENT '返回的记录数'
,`
26.
`ROWS_EXAMINED` bigint(```20
) unsigned NOT NULL COMMENT '读取扫描的记录数目'
,`
27.
`CREATED_TMP_DISK_TABLES` bigint(```20
) unsigned NOT NULL COMMENT '创建磁盘临时表数目'
,`
28.
`CREATED_TMP_TABLES` bigint(```20
) unsigned NOT NULL COMMENT '创建临时表数目'
,`
29.
`SELECT_FULL_JOIN` bigint(```20
) unsigned NOT NULL COMMENT 'join时,第一个表为全表扫描的数目'
,`
30.
`SELECT_FULL_RANGE_JOIN` bigint(```20
) unsigned NOT NULL COMMENT '引用表采用range方式扫描的数目'
,`
31.
`SELECT_RANGE` bigint(```20
) unsigned NOT NULL COMMENT 'join时,第一个表采用range方式扫描的数目'
,`
32.
`SELECT_RANGE_CHECK` bigint(```20
) unsigned NOT NULL COMMENT ''
,`
33.
`SELECT_SCAN` bigint(```20
) unsigned NOT NULL COMMENT 'join时,第一个表位全表扫描的数目'
,`
34.
`SORT_MERGE_PASSES` bigint(```20
) unsigned NOT NULL COMMENT ''
,`
35.
`SORT_RANGE` bigint(```20
) unsigned NOT NULL COMMENT '范围排序数目'
,`
36.
`SORT_ROWS` bigint(```20
) unsigned NOT NULL COMMENT '排序的记录数目'
,`
37.
`SORT_SCAN` bigint(```20
) unsigned NOT NULL COMMENT '全表排序数目'
,`
38.
`NO_INDEX_USED` bigint(```20
) unsigned NOT NULL COMMENT '没有使用索引数目'
,`
39.
`NO_GOOD_INDEX_USED` bigint(```20
) unsigned NOT NULL COMMENT ''
,`
40.
`NESTING_EVENT_ID` bigint(```20
) unsigned DEFAULT NULL COMMENT '该事件对应的父事件ID'
,`
41.
`NESTING_EVENT_TYPE` ```enum
('STATEMENT'
,'STAGE'
,'WAIT'
) DEFAULT NULL COMMENT `'父事件类型(STATEMENT, STAGE, WAIT)'
42.
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8
六:Connection 表
1,users:记录用户连接数信息
2,hosts:记录了主机连接数信息
3,accounts:记录了用户主机连接数信息
view source print ?
01.
zjy``@performance_schema
12``:``03``:``27``>select * from users;
02.
+------------------+---------------------+-------------------+
03.
| USER | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
04.
+------------------+---------------------+-------------------+
05.
| debian-sys-maint | ``0
| ``36
|
06.
| zjy | ``1
| ``22285
|
07.
| dchat_php | ``0
| ``37864
|
08.
| dxyslave | ``2
| ``9
|
09.
| nagios | ``0
| ``10770
|
10.
| dchat_data | ``140
| ``2233023
|
11.
| NULL | ``0
| ``15866
|
12.
| dchat_api | ``160
| ``2754212
|
13.
| mha_data | ``1
| ``36
|
14.
| backup | ``0
| ``15
|
15.
| cacti | ``0
| ``4312
|
16.
| kol | ``10
| ``172414
|
17.
+------------------+---------------------+-------------------+
18.
12
rows in set (``0.00
sec)
19.
20.
zjy``@performance_schema
12``:``03``:``34``>select * from hosts;
21.
+-----------------+---------------------+-------------------+
22.
| HOST | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
23.
+-----------------+---------------------+-------------------+
24.
| ``192.168``.``100.218
| ``150
| ``2499422
|
25.
| ``192.168``.``100.240
| ``10
| ``172429
|
26.
| ``192.168``.``100.139
| ``0
| ``698
|
27.
| ``192.168``.``100.21
| ``0
| ``2
|
28.
| ``192.168``.``100.220
| ``150
| ``2526136
|
29.
| ``192.168``.``100.25
| ``1
| ``7
|
30.
| NULL | ``0
| ``15867
|
31.
| ``192.168``.``100.241
| ``0
| ``21558
|
32.
| ``192.168``.``100.191
| ``1
| ``34
|
33.
| localhost | ``0
| ``10807
|
34.
| ``192.168``.``100.118
| ``1
| ``2
|
35.
| ``192.168``.``100.251
| ``0
| ``4312
|
36.
| ``192.168``.``100.23
| ``1
| ``31
|
37.
| ``192.168``.``100.193
| ``0
| ``15
|
38.
+-----------------+---------------------+-------------------+
39.
14
rows in set (``0.01
sec)
40.
41.
zjy``@performance_schema
12``:``05``:``21``>select * from accounts;
42.
+------------------+-----------------+---------------------+-------------------+
43.
| USER | HOST | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
44.
+------------------+-----------------+---------------------+-------------------+
45.
| cacti | ``192.168``.``100.251
| ``0
| ``4313
|
46.
| debian-sys-maint | localhost | ``0
| ``36
|
47.
| backup | ``192.168``.``100.193
| ``0
| ``15
|
48.
| dchat_api | ``192.168``.``100.220
| ``80
| ``1382585
|
49.
| dchat_php | ``192.168``.``100.220
| ``0
| ``20292
|
50.
| zjy | ``192.168``.``100.139
| ``0
| ``698
|
51.
| zjy | ``192.168``.``100.241
| ``0
| ``21558
|
52.
| mha_data | ``192.168``.``100.191
| ``1
| ``34
|
53.
| dxyslave | ``192.168``.``100.118
| ``1
| ``2
|
54.
| kol | ``192.168``.``100.240
| ``10
| ``172431
|
55.
| dxyslave | ``192.168``.``100.25
| ``1
| ``7
|
56.
| dchat_data | ``192.168``.``100.218
| ``70
| ``1109974
|
57.
| zjy | ``192.168``.``100.23
| ``1
| ``31
|
58.
| dchat_php | ``192.168``.``100.218
| ``0
| ``17572
|
59.
| dchat_data | ``192.168``.``100.220
| ``70
| ``1123306
|
60.
| NULL | NULL | ``0
| ``15868
|
61.
| mha_data | ``192.168``.``100.21
| ``0
| ``2
|
62.
| dchat_api | ``192.168``.``100.218
| ``80
| ``1371918
|
63.
| nagios | localhost | ``0
| ``10771
|
64.
+------------------+-----------------+---------------------+-------------------+
七:Summary 表: Summary表聚集了各个维度的统计信息包括表维度,索引维度,会话维度,语句维度和锁维度的统计信息
1,events_waits_summary_global_by_event_name:按等待事件类型聚合,每个事件一条记录
view source print ?
1.
CREATE TABLE `events_waits_summary_global_by_event_name` (
2.
`EVENT_NAME` varchar(```128
) NOT NULL COMMENT '事件名称'
,`
3.
`COUNT_STAR` bigint(```20
) unsigned NOT NULL COMMENT '事件计数'
,`
4.
`SUM_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '总的等待时间'
,`
5.
`MIN_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '最小等待时间'
,`
6.
`AVG_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '平均等待时间'
,`
7.
`MAX_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT `'最大等待时间'
8.
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8
2,events_waits_summary_by_instance:按等待事件对象聚合,同一种等待事件,可能有多个实例,每个实例有不同的内存地址,因此
event_name+object_instance_begin唯一确定一条记录。
view source print ?
01.
CREATE TABLE `events_waits_summary_by_instance` (
02.
`EVENT_NAME` varchar(```128
) NOT NULL COMMENT '事件名称'
,`
03.
`OBJECT_INSTANCE_BEGIN` bigint(```20
) unsigned NOT NULL COMMENT '内存地址'
,`
04.
`COUNT_STAR` bigint(```20
) unsigned NOT NULL COMMENT '事件计数'
,`
05.
`SUM_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '总的等待时间'
,`
06.
`MIN_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '最小等待时间'
,`
07.
`AVG_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '平均等待时间'
,`
08.
`MAX_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT `'最大等待时间'
09.
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8
3,events_waits_summary_by_thread_by_event_name:按每个线程和事件来统计,thread_id+event_name唯一确定一条记录。
view source print ?
01.
CREATE TABLE `events_waits_summary_by_thread_by_event_name` (
02.
`THREAD_ID` bigint(```20
) unsigned NOT NULL COMMENT '线程ID'
,`
03.
`EVENT_NAME` varchar(```128
) NOT NULL COMMENT '事件名称'
,`
04.
`COUNT_STAR` bigint(```20
) unsigned NOT NULL COMMENT '事件计数'
,`
05.
`SUM_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '总的等待时间'
,`
06.
`MIN_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '最小等待时间'
,`
07.
`AVG_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '平均等待时间'
,`
08.
`MAX_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT `'最大等待时间'
09.
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8
4,events_stages_summary_global_by_event_name:按事件阶段类型聚合,每个事件一条记录,表结构同上。
5,events_stages_summary_by_thread_by_event_name:按每个线程和事件来阶段统计,表结构同上。
6,events_statements_summary_by_digest:按照事件的语句进行聚合。
view source print ?
01.
CREATE TABLE `events_statements_summary_by_digest` (
02.
`SCHEMA_NAME` varchar(```64
) DEFAULT NULL COMMENT '库名'
,`
03.
`DIGEST` varchar(```32
) DEFAULT NULL COMMENT '对SQL_TEXT做MD5产生的32位字符串。如果为consumer表中没有打开statement_digest选项,则为NULL'
,`
04.
`DIGEST_TEXT` longtext COMMENT ```'将语句中值部分用问号代替,用于SQL语句归类。如果为consumer表中没有打开statement_digest选项,则为NULL。'
,`
05.
`COUNT_STAR` bigint(```20
) unsigned NOT NULL COMMENT '事件计数'
,`
06.
`SUM_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '总的等待时间'
,`
07.
`MIN_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '最小等待时间'
,`
08.
`AVG_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '平均等待时间'
,`
09.
`MAX_TIMER_WAIT` bigint(```20
) unsigned NOT NULL COMMENT '最大等待时间'
,`
10.
`SUM_LOCK_TIME` bigint(```20
) unsigned NOT NULL COMMENT '锁时间总时长'
,`
11.
`SUM_ERRORS` bigint(```20
) unsigned NOT NULL COMMENT '错误数的总'
,`
12.
`SUM_WARNINGS` bigint(```20
) unsigned NOT NULL COMMENT '警告的总数'
,`
13.
`SUM_ROWS_AFFECTED` bigint(```20
) unsigned NOT NULL COMMENT '影响的总数目'
,`
14.
`SUM_ROWS_SENT` bigint(```20
) unsigned NOT NULL COMMENT '返回总数目'
,`
15.
`SUM_ROWS_EXAMINED` bigint(```20
) unsigned NOT NULL COMMENT '总的扫描的数目'
,`
16.
`SUM_CREATED_TMP_DISK_TABLES` bigint(```20
) unsigned NOT NULL COMMENT '创建磁盘临时表的总数目'
,`
17.
`SUM_CREATED_TMP_TABLES` bigint(```20
) unsigned NOT NULL COMMENT '创建临时表的总数目'
,`
18.
`SUM_SELECT_FULL_JOIN` bigint(```20
) unsigned NOT NULL COMMENT '第一个表全表扫描的总数目'
,`
19.
`SUM_SELECT_FULL_RANGE_JOIN` bigint(```20
) unsigned NOT NULL COMMENT '总的采用range方式扫描的数目'
,`
20.
`SUM_SELECT_RANGE` bigint(```20
) unsigned NOT NULL COMMENT '第一个表采用range方式扫描的总数目'
,`
21.
`SUM_SELECT_RANGE_CHECK` bigint(```20
) unsigned NOT NULL COMMENT ''
,`
22.
`SUM_SELECT_SCAN` bigint(```20
) unsigned NOT NULL COMMENT '第一个表位全表扫描的总数目'
,`
23.
`SUM_SORT_MERGE_PASSES` bigint(```20
) unsigned NOT NULL COMMENT ''
,`
24.
`SUM_SORT_RANGE` bigint(```20
) unsigned NOT NULL COMMENT '范围排序总数'
,`
25.
`SUM_SORT_ROWS` bigint(```20
) unsigned NOT NULL COMMENT '排序的记录总数目'
,`
26.
`SUM_SORT_SCAN` bigint(```20
) unsigned NOT NULL COMMENT '第一个表排序扫描总数目'
,`
27.
`SUM_NO_INDEX_USED` bigint(```20
) unsigned NOT NULL COMMENT '没有使用索引总数'
,`
28.
`SUM_NO_GOOD_INDEX_USED` bigint(```20
) unsigned NOT NULL COMMENT ''
,`
29.
`FIRST_SEEN` timestamp NOT NULL DEFAULT ```'0000-00-00 00:00:00'` `COMMENT
‘第一次执行时间’`,
30.
`LAST_SEEN` timestamp NOT NULL DEFAULT ```'0000-00-00 00:00:00'` `COMMENT
‘最后一次执行时间’`
31.
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8
7,events_statements_summary_global_by_event_name:按照事件的语句进行聚合。表结构同上。
8,events_statements_summary_by_thread_by_event_name:按照线程和事件的语句进行聚合,表结构同上。
9,file_summary_by_instance:按事件类型统计(物理IO维度)
10,file_summary_by_event_name:具体文件统计(物理IO维度)
9和10一起说明:
统计IO操作:COUNT_STAR,SUM_TIMER_WAIT,MIN_TIMER_WAIT,AVG_TIMER_WAIT,MAX_TIMER_WAIT
统计读 :COUNT_READ,SUM_TIMER_READ,MIN_TIMER_READ,AVG_TIMER_READ,MAX_TIMER_READ, SUM_NUMBER_OF_BYTES_READ
统计写 :COUNT_WRITE,SUM_TIMER_WRITE,MIN_TIMER_WRITE,AVG_TIMER_WRITE,MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE
统计其他IO事件,比如create,delete,open,close等:COUNT_MISC,SUM_TIMER_MISC,MIN_TIMER_MISC,AVG_TIMER_MISC,MAX_TIMER_MISC
11,table_io_waits_summary_by_table:根据wait/io/table/sql/handler,聚合每个表的I/O操作(逻辑IO纬度)
统计IO操作:COUNT_STAR,SUM_TIMER_WAIT,MIN_TIMER_WAIT,AVG_TIMER_WAIT,MAX_TIMER_WAIT
统计读 :COUNT_READ,SUM_TIMER_READ,MIN_TIMER_READ,AVG_TIMER_READ,MAX_TIMER_READ
:COUNT\_FETCH,SUM\_TIMER\_FETCH,MIN\_TIMER\_FETCH,AVG\_TIMER\_FETCH, MAX\_TIMER\_FETCH
统计写 :COUNT_WRITE,SUM_TIMER_WRITE,MIN_TIMER_WRITE,AVG_TIMER_WRITE,MAX_TIMER_WRITE
INSERT统计,相应的还有DELETE和UPDATE统计:COUNT_INSERT,SUM_TIMER_INSERT,MIN_TIMER_INSERT,AVG_TIMER_INSERT,MAX_TIMER_INSERT
12,table_io_waits_summary_by_index_usage:与table_io_waits_summary_by_table类似,按索引维度统计
13,table_lock_waits_summary_by_table:聚合了表锁等待事件,包括internal lock 和 external lock
internal lock通过SQL层函数thr_lock调用,OPERATION值为:
read normal、read with shared locks、read high priority、read no insert、write allow write、write concurrent insert、write delayed、write low priority、write normal
external lock则通过接口函数handler::external_lock调用存储引擎层,OPERATION列的值为:read external、write external
14,Connection Summaries表:account、user、host
events_waits_summary_by_account_by_event_name
events_waits_summary_by_user_by_event_name
events_waits_summary_by_host_by_event_name
events_stages_summary_by_account_by_event_name
events_stages_summary_by_user_by_event_name
events_stages_summary_by_host_by_event_name
events_statements_summary_by_account_by_event_name
events_statements_summary_by_user_by_event_name
events_statements_summary_by_host_by_event_name
15,socket_summary_by_instance、socket_summary_by_event_name:socket聚合统计表。
八:其他相关表
1,performance_timers:系统支持的统计时间单位
2,threads:监视服务端的当前运行的线程
统计应用:
关于SQL维度的统计信息主要集中在events\_statements\_summary\_by\_digest表中,通过将SQL语句抽象出digest,可以统计某类SQL语句在各个维度的统计信息
1,哪个SQL执行最多:
view source print ?
01.
zjy``@performance_schema
11``:``36``:``22``><strong>SELECT SCHEMA_NAME,DIGEST_TEXT,COUNT_STAR,SUM_ROWS_SENT,SUM_ROWS_EXAMINED,FIRST_SEEN,LAST_SEEN FROM events_statements_summary_by_digest ORDER BY COUNT_STAR desc LIMIT 1G
02.
</strong>*************************** ``1``. row ***************************<strong>
03.
SCHEMA_NAME</strong>: dchat
04.
<strong>DIGEST_TEXT</strong>: SELECT ...
05.
<strong>COUNT_STAR</strong>: ``1161210102
06.
SUM_ROWS_SENT: ``1161207842
07.
SUM_ROWS_EXAMINED: ``0``<strong>
08.
FIRST_SEEN</strong>: ``2016``-``02``-``17
00``:``36``:``46``<strong>
09.
LAST_SEEN</strong>: ``2016``-``03``-``07
11``:``36``:``29
各个字段的注释可以看上面的表结构说明:从2月17号到3月7号该SQL执行了1161210102次。
2,哪个SQL平均响应时间最多:
view source print ?
01.
zjy``@performance_schema
11``:``36``:``28``><strong>SELECT SCHEMA_NAME,DIGEST_TEXT,COUNT_STAR,AVG_TIMER_WAIT,SUM_ROWS_SENT,SUM_ROWS_EXAMINED,FIRST_SEEN,LAST_SEEN FROM events_statements_summary_by_digest ORDER BY AVG_TIMER_WAIT desc LIMIT 1G
02.
</strong>*************************** ``1``. row ***************************<strong>
03.
SCHEMA_NAME</strong>: dchat
04.
<strong>DIGEST_TEXT</strong>: SELECT ...
05.
COUNT_STAR: ``1``<strong>
06.
AVG_TIMER_WAIT</strong>: ``273238183964000
07.
SUM_ROWS_SENT: ``50208
08.
SUM_ROWS_EXAMINED: ``5565651``<strong>
09.
FIRST_SEEN</strong>: ``2016``-``02``-``22
13``:``27``:``33``<strong>
10.
LAST_SEEN</strong>: ``2016``-``02``-``22
13``:``27``:``33
各个字段的注释可以看上面的表结构说明:从2月17号到3月7号该SQL平均响应时间273238183964000皮秒(1000000000000皮秒=1秒)
3,哪个SQL扫描的行数最多:
SUM_ROWS_EXAMINED
4,哪个SQL使用的临时表最多:
SUM_CREATED_TMP_DISK_TABLES、SUM_CREATED_TMP_TABLES
5,哪个SQL返回的结果集最多:
SUM_ROWS_SENT
6,哪个SQL排序数最多:
SUM_SORT_ROWS
通过上述指标我们可以间接获得某类SQL的逻辑IO(SUM_ROWS_EXAMINED),CPU消耗(SUM_SORT_ROWS),网络带宽(SUM_ROWS_SENT)的对比。
通过file_summary_by_instance表,可以获得系统运行到现在,哪个文件(表)物理IO最多,这可能意味着这个表经常需要访问磁盘IO。
7,哪个表、文件逻辑IO最多(热数据):
view source print ?
01.
zjy``@performance_schema
12``:``16``:``18``><strong>SELECT FILE_NAME,EVENT_NAME,COUNT_READ,SUM_NUMBER_OF_BYTES_READ,COUNT_WRITE,SUM_NUMBER_OF_BYTES_WRITE FROM file_summary_by_instance ORDER BY SUM_NUMBER_OF_BYTES_READ+SUM_NUMBER_OF_BYTES_WRITE DESC LIMIT 2G
02.
</strong>*************************** ``1``. row ***************************
03.
FILE_NAME: /var/lib/mysql/<strong>ibdata1 #文件</strong>
04.
EVENT_NAME: wait/io/file/innodb/innodb_data_file
05.
COUNT_READ: ``544
06.
SUM_NUMBER_OF_BYTES_READ: ``10977280
07.
COUNT_WRITE: ``3700729
08.
SUM_NUMBER_OF_BYTES_WRITE: ``1433734217728
09.
*************************** ``2``. row ***************************
10.
FILE_NAME: /var/lib/mysql/dchat/<strong>fans.ibd #表</strong>
11.
EVENT_NAME: wait/io/file/innodb/innodb_data_file
12.
COUNT_READ: ``9370680
13.
SUM_NUMBER_OF_BYTES_READ: ``153529188352
14.
COUNT_WRITE: ``67576376
15.
SUM_NUMBER_OF_BYTES_WRITE: ``1107815432192
8,哪个索引使用最多:
view source print ?
1.
zjy``@performance_schema
12``:``18``:``42``><strong>SELECT OBJECT_NAME, INDEX_NAME, COUNT_FETCH, COUNT_INSERT, COUNT_UPDATE, COUNT_DELETE FROM table_io_waits_summary_by_index_usage ORDER BY SUM_TIMER_WAIT DESC limit ``1``;
2.
</strong>+-------------+------------+-------------+--------------+--------------+--------------+
3.
| OBJECT_NAME | INDEX_NAME | COUNT_FETCH | COUNT_INSERT | COUNT_UPDATE | COUNT_DELETE |
4.
+-------------+------------+-------------+--------------+--------------+--------------+
5.
| <strong>fans</strong> | <strong>PRIMARY</strong> | ``29002695158
| ``0``| ``296373434
| ``0
|
6.
+-------------+------------+-------------+--------------+--------------+--------------+
7.
1
row in set (``0.29
sec)
通过table_io_waits_summary_by_index_usage表,可以获得系统运行到现在,哪个表的具体哪个索引(包括主键索引,二级索引)使用最多。
9,哪个索引没有使用过:
view source print ?
1.
zjy``@performance_schema
12``:``23``:``22``><strong>SELECT OBJECT_SCHEMA, OBJECT_NAME, INDEX_NAME FROM table_io_waits_summary_by_index_usage WHERE INDEX_NAME IS NOT NULL AND COUNT_STAR = ``0
AND OBJECT_SCHEMA <> ``'mysql'
ORDER BY OBJECT_SCHEMA,OBJECT_NAME;</strong>
10,哪个等待事件消耗的时间最多:
view source print ?
1.
zjy``@performance_schema
12``:``25``:``22``><strong>SELECT EVENT_NAME, COUNT_STAR, SUM_TIMER_WAIT, AVG_TIMER_WAIT FROM events_waits_summary_global_by_event_name WHERE event_name != ``'idle'``ORDER BY SUM_TIMER_WAIT DESC LIMIT ``1``;</strong>
11,类似profiling功能:
分析具体某条SQL,该SQL在执行各个阶段的时间消耗,通过events_statements_xxx表和events_stages_xxx表,就可以达到目的。两个表通过event_id与nesting_event_id关联,stages表的nesting_event_id为对应statements表的event_id;针对每个stage可能出现的锁等待,一个stage会对应一个或多个wait,通过stage_xxx表的event_id字段与waits_xxx表的nesting_event_id进行关联。如:
view source print ?
001.
比如分析包含count(*)的某条SQL语句,具体如下:
002.
003.
SELECT
004.
EVENT_ID,
005.
sql_text
006.
FROM events_statements_history
007.
WHERE sql_text LIKE ``'%count(*)%'``;
008.
+----------+--------------------------------------+
009.
| EVENT_ID | sql_text |
010.
+----------+--------------------------------------+
011.
| ``1690
| select count(*) from chuck.test_slow |
012.
+----------+--------------------------------------+
013.
首先得到了语句的event_id为``1690``,通过查找events_stages_xxx中nesting_event_id为``1690``的记录,可以达到目的。
014.
015.
a.查看每个阶段的时间消耗:
016.
SELECT
017.
event_id,
018.
EVENT_NAME,
019.
SOURCE,
020.
TIMER_END - TIMER_START
021.
FROM events_stages_history_long
022.
WHERE NESTING_EVENT_ID = ``1690``;
023.
+----------+--------------------------------+----------------------+-----------------------+
024.
| event_id | EVENT_NAME | SOURCE | TIMER_END-TIMER_START |
025.
+----------+--------------------------------+----------------------+-----------------------+
026.
| ``1691
| stage/sql/init | mysqld.cc:``990
| ``316945000
|
027.
| ``1693
| stage/sql/checking permissions | sql_parse.cc:``5776
| ``26774000
|
028.
| ``1695
| stage/sql/Opening tables | sql_base.cc:``4970
| ``41436934000
|
029.
| ``2638
| stage/sql/init | sql_select.cc:``1050
| ``85757000
|
030.
| ``2639
| stage/sql/System lock | lock.cc:``303
| ``40017000
|
031.
| ``2643
| stage/sql/optimizing | sql_optimizer.cc:``138
| ``38562000
|
032.
| ``2644
| stage/sql/statistics | sql_optimizer.cc:``362
| ``52845000
|
033.
| ``2645
| stage/sql/preparing | sql_optimizer.cc:``485
| ``53196000
|
034.
| ``2646
| stage/sql/executing | sql_executor.cc:``112
| ``3153000
|
035.
| ``2647
| stage/sql/Sending data | sql_executor.cc:``192
| ``7369072089000
|
036.
| ``4304138
| stage/sql/end | sql_select.cc:``1105
| ``19920000
|
037.
| ``4304139
| stage/sql/query end | sql_parse.cc:``5463
| ``44721000
|
038.
| ``4304145
| stage/sql/closing tables | sql_parse.cc:``5524
| ``61723000
|
039.
| ``4304152
| stage/sql/freeing items | sql_parse.cc:``6838
| ``455678000
|
040.
| ``4304155
| stage/sql/logging slow query | sql_parse.cc:``2258
| ``83348000
|
041.
| ``4304159
| stage/sql/cleaning up | sql_parse.cc:``2163
| ``4433000
|
042.
+----------+--------------------------------+----------------------+-----------------------+
043.
通过间接关联,我们能分析得到SQL语句在每个阶段的时间消耗,时间单位以皮秒表示。这里展示的结果很类似profiling功能,有了performance schema,就不再需要profiling这个功能了。另外需要注意的是,由于默认情况下events_stages_history表中只为每个连接记录了最近``10``条记录,为了确保获取所有记录,需要访问events_stages_history_long表
044.
045.
b.查看某个阶段的锁等待情况
046.
针对每个stage可能出现的锁等待,一个stage会对应一个或多个wait,events_waits_history_long这个表容易爆满[默认阀值``10000``]。由于select count(*)需要IO(逻辑IO或者物理IO),所以在stage/sql/Sending data阶段会有io等待的统计。通过stage_xxx表的event_id字段与waits_xxx表的nesting_event_id进行关联。
047.
SELECT
048.
event_id,
049.
event_name,
050.
source,
051.
timer_wait,
052.
object_name,
053.
index_name,
054.
operation,
055.
nesting_event_id
056.
FROM events_waits_history_long
057.
WHERE nesting_event_id = ``2647``;
058.
+----------+---------------------------+-----------------+------------+-------------+------------+-----------+------------------+
059.
| event_id | event_name | source | timer_wait | object_name | index_name | operation | nesting_event_id |
060.
+----------+---------------------------+-----------------+------------+-------------+------------+-----------+------------------+
061.
| ``190607
| wait/io/table/sql/handler | handler.cc:``2842
| ``1845888
| test_slow | idx_c1 | fetch | ``2647
|
062.
| ``190608
| wait/io/table/sql/handler | handler.cc:``2842
| ``1955328
| test_slow | idx_c1 | fetch | ``2647
|
063.
| ``190609
| wait/io/table/sql/handler | handler.cc:``2842
| ``1929792
| test_slow | idx_c1 | fetch | ``2647
|
064.
| ``190610
| wait/io/table/sql/handler | handler.cc:``2842
| ``1869600
| test_slow | idx_c1 | fetch | ``2647
|
065.
| ``190611
| wait/io/table/sql/handler | handler.cc:``2842
| ``1922496
| test_slow | idx_c1 | fetch | ``2647
|
066.
+----------+---------------------------+-----------------+------------+-------------+------------+-----------+------------------+
067.
通过上面的实验,我们知道了statement,stage,wait的三级结构,通过nesting_event_id进行关联,它表示某个事件的父event_id。
068.
069.
(``2``).模拟innodb行锁等待的例子
070.
会话A执行语句update test_icp set y=y+``1
where x=``1``(x为primary key),不commit;会话B执行同样的语句update test_icp set y=y+``1
where x=``1``,会话B堵塞,并最终报错。通过连接连接查询events_statements_history_long和events_stages_history_long,可以看到在updating阶段花了大约60s的时间。这主要因为实例上的innodb_lock_wait_timeout设置为``60``,等待60s后超时报错了。
071.
072.
SELECT
073.
statement.EVENT_ID,
074.
stages.event_id,
075.
statement.sql_text,
076.
stages.event_name,
077.
stages.timer_wait
078.
FROM events_statements_history_long statement
079.
join events_stages_history_long stages
080.
on statement.event_id=stages.nesting_event_id
081.
WHERE statement.sql_text = ``'update test_icp set y=y+1 where x=1'``;
082.
+----------+----------+-------------------------------------+--------------------------------+----------------+
083.
| EVENT_ID | event_id | sql_text | event_name | timer_wait |
084.
+----------+----------+-------------------------------------+--------------------------------+----------------+
085.
| ``5816
| ``5817
| update test_icp set y=y+``1
where x=``1
| stage/sql/init | ``195543000
|
086.
| ``5816
| ``5819
| update test_icp set y=y+``1
where x=``1
| stage/sql/checking permissions |``22730000
|
087.
| ``5816
| ``5821
| update test_icp set y=y+``1
where x=``1
| stage/sql/Opening tables | ``66079000
|
088.
| ``5816
| ``5827
| update test_icp set y=y+``1
where x=``1
| stage/sql/init | ``89116000
|
089.
| ``5816
| ``5828
| update test_icp set y=y+``1
where x=``1
| stage/sql/System lock | ``218744000
|
090.
| ``5816
| ``5832
| update test_icp set y=y+``1
where x=``1
| stage/sql/updating | ``6001362045000
|
091.
| ``5816
| ``5968
| update test_icp set y=y+``1
where x=``1
| stage/sql/end | ``10435000
|
092.
| ``5816
| ``5969
| update test_icp set y=y+``1
where x=``1
| stage/sql/query end | ``85979000
|
093.
| ``5816
| ``5983
| update test_icp set y=y+``1
where x=``1
| stage/sql/closing tables | ``56562000
|
094.
| ``5816
| ``5990
| update test_icp set y=y+``1
where x=``1
| stage/sql/freeing items | ``83563000
|
095.
| ``5816
| ``5992
| update test_icp set y=y+``1
where x=``1
| stage/sql/cleaning up | ``4589000
|
096.
+----------+----------+-------------------------------------+--------------------------------+----------------+
097.
查看wait事件:
098.
SELECT
099.
event_id,
100.
event_name,
101.
source,
102.
timer_wait,
103.
object_name,
104.
index_name,
105.
operation,
106.
nesting_event_id
107.
FROM events_waits_history_long
108.
WHERE nesting_event_id = ``5832``;
109.
*************************** ``1``. row ***************************
110.
event_id: ``5832
111.
event_name: wait/io/table/sql/handler
112.
source: handler.cc:``2782
113.
timer_wait: ``6005946156624
114.
object_name: test_icp
115.
index_name: PRIMARY
116.
operation: fetch
117.
从结果来看,waits表中记录了一个fetch等待事件,但并没有更细的innodb行锁等待事件统计。
118.
119.
(``3``).模拟MDL锁等待的例子
120.
会话A执行一个大查询select count(*) from test_slow,会话B执行表结构变更alter table test_slow modify c2 varchar(``152``);通过如下语句可以得到alter语句的执行过程,重点关注“stage/sql/Waiting ``for
table metadata lock”阶段。
121.
122.
SELECT
123.
statement.EVENT_ID,
124.
stages.event_id,
125.
statement.sql_text,
126.
stages.event_name as stage_name,
127.
stages.timer_wait as stage_time
128.
FROM events_statements_history_long statement
129.
left join events_stages_history_long stages
130.
on statement.event_id=stages.nesting_event_id
131.
WHERE statement.sql_text = ``'alter table test_slow modify c2 varchar(152)'``;
132.
+-----------+-----------+----------------------------------------------+----------------------------------------------------+---------------+
133.
| EVENT_ID | event_id | sql_text | stage_name | stage_time |
134.
+-----------+-----------+----------------------------------------------+----------------------------------------------------+---------------+
135.
| ``326526744
| ``326526745
| alter table test_slow modify c2 varchar(``152``) | stage/sql/init |``216662000
|
136.
| ``326526744
| ``326526747
| alter table test_slow modify c2 varchar(``152``) | stage/sql/checking permissions | ``18183000
|
137.
| ``326526744
| ``326526748
| alter table test_slow modify c2 varchar(``152``) | stage/sql/checking permissions | ``10294000
|
138.
| ``326526744
| ``326526750
| alter table test_slow modify c2 varchar(``152``) | stage/sql/init |``4783000
|
139.
| ``326526744
| ``326526751
| alter table test_slow modify c2 varchar(``152``) | stage/sql/Opening tables | ``140172000
|
140.
| ``326526744
| ``326526760
| alter table test_slow modify c2 varchar(``152``) | stage/sql/setup |``157643000
|
141.
| ``326526744
| ``326526769
| alter table test_slow modify c2 varchar(``152``) | stage/sql/creating table | ``8723217000
|
142.
| ``326526744
| ``326526803
| alter table test_slow modify c2 varchar(``152``) | stage/sql/After create | ``257332000
|
143.
| ``326526744
| ``326526832
| alter table test_slow modify c2 varchar(``152``) | stage/sql/Waiting``for
table metadata lock | ``1000181831000
|
144.
| ``326526744
| ``326526835
| alter table test_slow modify c2 varchar(``152``) | stage/sql/After create | ``33483000
|
145.
| ``326526744
| ``326526838
| alter table test_slow modify c2 varchar(``152``) | stage/sql/Waiting``for
table metadata lock | ``1000091810000
|
146.
| ``326526744
| ``326526841
| alter table test_slow modify c2 varchar(``152``) | stage/sql/After create | ``17187000
|
147.
| ``326526744
| ``326526844
| alter table test_slow modify c2 varchar(``152``) | stage/sql/Waiting``for
table metadata lock | ``1000126464000
|
148.
| ``326526744
| ``326526847
| alter table test_slow modify c2 varchar(``152``) | stage/sql/After create | ``27472000
|
149.
| ``326526744
| ``326526850
| alter table test_slow modify c2 varchar(``152``) | stage/sql/Waiting``for
table metadata lock | ``561996133000
|
150.
| ``326526744
| ``326526853
| alter table test_slow modify c2 varchar(``152``) | stage/sql/After create | ``124876000
|
151.
| ``326526744
| ``326526877
| alter table test_slow modify c2 varchar(``152``) | stage/sql/System lock | ``30659000
|
152.
| ``326526744
| ``326526881
| alter table test_slow modify c2 varchar(``152``) | stage/sql/preparing``for
alter table | ``40246000
|
153.
| ``326526744
| ``326526889
| alter table test_slow modify c2 varchar(``152``) | stage/sql/altering table | ``36628000
|
154.
| ``326526744
| ``326528280
| alter table test_slow modify c2 varchar(``152``) | stage/sql/end |``43824000
|
155.
| ``326526744
| ``326528281
| alter table test_slow modify c2 varchar(``152``) | stage/sql/query end | ``112557000
|
156.
| ``326526744
| ``326528299
| alter table test_slow modify c2 varchar(``152``) | stage/sql/closing tables | ``27707000
|
157.
| ``326526744
| ``326528305
| alter table test_slow modify c2 varchar(``152``) | stage/sql/freeing items | ``201614000
|
158.
| ``326526744
| ``326528308
| alter table test_slow modify c2 varchar(``152``) | stage/sql/cleaning up | ``3584000
|
159.
+-----------+-----------+----------------------------------------------+----------------------------------------------------+---------------+
160.
从结果可以看到,出现了多次stage/sql/Waiting ``for
table metadata lock阶段,并且间隔1s,说明每隔1s钟会重试判断。找一个该阶段的event_id,通过nesting_event_id关联,确定到底在等待哪个wait事件。
161.
SELECT
162.
event_id,
163.
event_name,
164.
source,
165.
timer_wait,
166.
object_name,
167.
index_name,
168.
operation,
169.
nesting_event_id
170.
FROM events_waits_history_long
171.
WHERE nesting_event_id = ``326526850``;
172.
+-----------+---------------------------------------------------+------------------+--------------+-------------+------------+------------+------------------+
173.
| event_id | event_name | source | timer_wait | object_name | index_name | operation | nesting_event_id |
174.
+-----------+---------------------------------------------------+------------------+--------------+-------------+------------+------------+------------------+
175.
| ``326526851
| wait/synch/cond/sql/MDL_context::COND_wait_status | mdl.cc:``1327
| ``562417991328``| NULL | NULL | timed_wait | ``326526850
|
176.
| ``326526852
| wait/synch/mutex/mysys/my_thread_var::mutex | sql_class.h:``3481
| ``733248
| NULL | NULL | lock | ``326526850
|
177.
+-----------+---------------------------------------------------+------------------+--------------+-------------+------------+------------+------------------+
178.
通过结果可以知道,产生阻塞的是条件变量MDL_context::COND_wait_status,并且显示了代码的位置。
总结:
本文通过对Performance Schema数据库的介绍,主要用于收集数据库服务器性能参数:①提供进程等待的详细信息,包括锁、互斥变量、文件信息;②保存历史的事件汇总信息,为提供MySQL服务器性能做出详细的判断;③对于新增和删除监控事件点都非常容易,并可以改变mysql服务器的监控周期,例如(CYCLE、MICROSECOND)。通过该库得到数据库运行的统计信息,更好分析定位问题和完善监控信息。类似的监控还有:
view source print ?
1.
打开标准的innodb监控:
2.
CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;
3.
打开innodb的锁监控:
4.
CREATE TABLE innodb_lock_monitor (a INT) ENGINE=INNODB;
5.
打开innodb表空间监控:
6.
CREATE TABLE innodb_tablespace_monitor (a INT) ENGINE=INNODB;
7.
打开innodb表监控:
8.
CREATE TABLE innodb_table_monitor (a INT) ENGINE=INNODB;
还没有评论,来说两句吧...