LeetCode - Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
一个非常经典的动态规划问题,状态转移方程:
f(i-1, j-1) word1[i] == word2[j]
f(i, j) =
Min{ f(i-1, j), f(i, j-1), f(i-1, j-1} } + 1 word1[i] != word2[j]
如上所示,f(i, j)表示word1.substring(i)与word2.substring(j)直接的距离
1)显然,如果word1[i] == word2[j],转化为递归解,即f(i-1, j-1)
2)如果word1[i] == word2[j],则可以对两个字符的最后一个字符串进行三种操作,对与字符word1[i]可以进行如下三种操作:
i) delete,即把此字符删除,则问题转化为f(i-1, j)
ii) replace,即把此字符替换为word2[j],则问题转化为f(i-1, j-1)
iii) Insert,即在此处增加一个字符word2[j], 则问题转化为f(i, j-1)
根据上述状态转移方程,很容易写出代码
public int minDistance(String word1, String word2) {
if (word1.equals(word2)) {
return 0;
}
if (word1.length() == 0 || word2.length() == 0) {
return Math.abs(word1.length() - word2.length());
}
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
for (int i = 0; i <= word1.length(); i++) {
dp[i][0] = i;
}
for (int i = 0; i <= word2.length(); i++) {
dp[0][i] = i;
}
for (int i = 1; i <= word1.length(); i++) {
for (int j = 1; j <= word2.length(); j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1])) + 1;
}
}
}
return dp[word1.length()][word2.length()];
}
又是一个比较经典的动态规划问题。
还没有评论,来说两句吧...