Codeforces Round #306 (Div. 2) D-E
D构造
首先我们想到的是做一个对称的图形,如同哑铃一般,中间的就是桥,两侧的就是双连通块。
那么我们想到的是构造一个双连通块,使得这个双连通块有一个点的度数为k−1,其他点的度数为k。
接着想到了完全图,对于一个完全图来说,每个点的度数为n−1,但是这样做不能够保证有一个点的度数为k−1,于是想到再加上一个点用k+2个点去构造。
此时发现当k是偶数的时候是不能够构造出来的。
奇数的时候,构造方法很多,随便画一下就行了。
我的方法是:将它连成一个环,然后除去最大的那个值(当做桥的接口),从(1)~((k+1)/2)向着对面((k+1)/2+1)~(k+1)连边。然后k+2再从(k+1)/2和(k+1)/2+1往两侧连缺少边。
// whn6325689
// Mr.Phoebe
// http://blog.csdn.net/u013007900
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
#include <functional>
#include <numeric>
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define eps 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LLINF 1LL<<62
#define speed std::ios::sync_with_stdio(false);
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<ll, ll> pll;
typedef complex<ld> point;
typedef pair<int, int> pii;
typedef pair<pii, int> piii;
typedef vector<int> vi;
#define CLR(x,y) memset(x,y,sizeof(x))
#define CPY(x,y) memcpy(x,y,sizeof(x))
#define clr(a,x,size) memset(a,x,sizeof(a[0])*(size))
#define cpy(a,x,size) memcpy(a,x,sizeof(a[0])*(size))
#define debug(a) cout << #a" = " << (a) << endl;
#define debugarry(a, n) for (int i = 0; i < (n); i++) { cout << #a"[" << i << "] = " << (a)[i] << endl; }
#define mp(x,y) make_pair(x,y)
#define pb(x) push_back(x)
#define lowbit(x) (x&(-x))
#define MID(x,y) (x+((y-x)>>1))
#define getidx(l,r) (l+r|l!=r)
#define ls getidx(l,mid)
#define rs getidx(mid+1,r)
#define lson l,mid
#define rson mid+1,r
template<class T>
inline bool read(T &n)
{
T x = 0, tmp = 1;
char c = getchar();
while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();
if(c == EOF) return false;
if(c == '-') c = getchar(), tmp = -1;
while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar();
n = x*tmp;
return true;
}
template <class T>
inline void write(T n)
{
if(n < 0)
{
putchar('-');
n = -n;
}
int len = 0,data[20];
while(n)
{
data[len++] = n%10;
n /= 10;
}
if(!len) data[len++] = 0;
while(len--) putchar(data[len]+48);
}
//-----------------------------------
int k;
vector<int> g[222];
int main()
{
scanf("%d",&k);
if(k==1)
{
puts("YES");
printf("%d %d\n",2,1);
printf("%d %d\n",1,2);
}
else if(k&1)
{
puts("YES");
for(int i=1; i<=k+1; i++)
for(int j=i+1; j<=k+1; j++)
g[i].push_back(j);
for(int i=1; i<=k/2; i++)
for(int j=0; j<g[i].size(); j++)
if(g[i][j]==(k+1)-i+1)
{
g[i][j]=k+2;
g[(k+1)-i+1].push_back(k+2);
}
printf("%d %d\n",(k+2)*2,(k+2)*k);
for(int i=1; i<=k+1; i++)
for(int j=0; j<g[i].size(); j++)
printf("%d %d\n",i,g[i][j]);
for(int i=1; i<=k+1; i++)
for(int j=0; j<g[i].size(); j++)
printf("%d %d\n",k+2+i,k+2+g[i][j]);
printf("%d %d\n",k+2,(k+2)*2);
}
else puts("NO");
return 0;
}
E也是构造,题目不太好做,但是如果看了数据的话,很快就可以出来。
从给的四个式子中可以发现如果结果要为0,最后一位必须是0,现在要做的就是再最后一个0之前构造1,我们可以发现如果最后一个0的前面一个是1,那么不管这个1之前是什么最后答案都是1,因为0 ->1=1,1 ->1=1,即与前面的值无关,所以我们转过来考虑不可能的情况,考虑最后一个0的前面是0,因为要构1,又0->0=0,1->0=0也就是说这个0前面不能是1,依次类推可以得到,如果倒数第二个0的前面都是1,那必然无解,否则就有解
// whn6325689
// Mr.Phoebe
// http://blog.csdn.net/u013007900
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
#include <functional>
#include <numeric>
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define eps 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LLINF 1LL<<62
#define speed std::ios::sync_with_stdio(false);
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<ll, ll> pll;
typedef complex<ld> point;
typedef pair<int, int> pii;
typedef pair<pii, int> piii;
typedef vector<int> vi;
#define CLR(x,y) memset(x,y,sizeof(x))
#define CPY(x,y) memcpy(x,y,sizeof(x))
#define clr(a,x,size) memset(a,x,sizeof(a[0])*(size))
#define cpy(a,x,size) memcpy(a,x,sizeof(a[0])*(size))
#define debug(a) cout << #a" = " << (a) << endl;
#define debugarry(a, n) for (int i = 0; i < (n); i++) { cout << #a"[" << i << "] = " << (a)[i] << endl; }
#define mp(x,y) make_pair(x,y)
#define pb(x) push_back(x)
#define lowbit(x) (x&(-x))
#define MID(x,y) (x+((y-x)>>1))
#define getidx(l,r) (l+r|l!=r)
#define ls getidx(l,mid)
#define rs getidx(mid+1,r)
#define lson l,mid
#define rson mid+1,r
template<class T>
inline bool read(T &n)
{
T x = 0, tmp = 1;
char c = getchar();
while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();
if(c == EOF) return false;
if(c == '-') c = getchar(), tmp = -1;
while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar();
n = x*tmp;
return true;
}
template <class T>
inline void write(T n)
{
if(n < 0)
{
putchar('-');
n = -n;
}
int len = 0,data[20];
while(n)
{
data[len++] = n%10;
n /= 10;
}
if(!len) data[len++] = 0;
while(len--) putchar(data[len]+48);
}
//-----------------------------------
const int MAXN=100010;
int a[MAXN],n;
int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
if(a[n])
{
puts("NO");
return 0;
}
if(n==1)
printf("YES\n0\n");
else if(a[n-1])
{
puts("YES");
for(int i=1; i<=n; i++)
printf("%d%s",a[i],i==n?"\n":"->");
}
else if(n==2)
printf("NO\n");
else
{
int las=n-2;
while(las && a[las]) las--;
if(las==0)
puts("NO");
else
{
puts("YES");
for(int i=1; i<las; i++)
printf("%d->",a[i]);
printf("(0->(");
for(int i=las+1; i<=n-2; i++)
printf("1->");
printf("0))->0\n");
}
}
return 0;
}
还没有评论,来说两句吧...