海量数据挖掘MMDS week5: 聚类clustering

系统管理员 2022-08-09 13:50 370阅读 0赞

http://[blog.csdn.net/pipisorry/article/details/49427989][blog.csdn.net_pipisorry_article_details_49427989]

海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent semantic analysis

{博客内容:Clustering. The problem is to take large numbers of points and group them into a small number of groups so that points are much closer to other points in their group than to points in other groups. This subject, although it has a long history, is sometimes referred to by the retronym “unsupervised learning,” because you “learn” something about the data without needed a training set.}

聚类综述Overview

问题形式化描述

Center

聚类难点

Center 1

聚类实例

Center 2 Center 3

Center 4

距离度量方法的选择

Center 5

聚类方法

Center 6

Note: A topic is just a set of words that appear together frequently.

皮皮blog

层次聚类Hierarchical Clustering

这里只讲凝聚即自底向上的层次聚类方法。

主要思想及问题

Center 7

欧式空间Euclidean的点和距离表示

Center 8

层次聚类示例1

合并距离最近的两点

Center 9

合并距离最近的新点

Center 10

非欧式空间Non-Euclidean的点和距离表示

皮皮blog

from:http://blog.csdn.net/pipisorry/article/details/49427989

ref: [聚类算法]

发表评论

表情:
评论列表 (有 0 条评论,370人围观)

还没有评论,来说两句吧...

相关阅读