发表评论取消回复
相关阅读
相关 准确率(Precision)、召回率(Recall)、F值(F-Measure)、平均正确率(Average Precision, AP),IoU
1、准确率与召回率(Precision & Recall) > 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相关文档
相关 Python 深度学习目标检测评价指标 :mAP、Precision、Recall、AP、IOU等
目标检测评价指标: 准确率 (Accuracy),混淆矩阵 (Confusion Matrix),精确率(Precision),召回率(Recall),平均正确率(AP)
相关 机器学习 精准率 — 召回率 — 准确率 — F1-Score
准确率 、召回率 、精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象
相关 目标检测评价标准(mAP, 精准度(Precision), 召回率(Recall), 准确率(Accuracy),交除并(IoU))
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=thres
相关 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(
相关 评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)
准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相关文档数
相关 Precision,Recall and F1-measure 准确率、召回率以及综合评价指标
通俗易懂,故转一下。 转自: [http://www.cnblogs.com/bluepoint2009/archive/2012/09/18/precision-recall
相关 class average accuracy, accuracy ,precision ,recall 机器学习基础评价标准
这几个评价标准非常容易弄混与想当然。认真看哈,很重要。 对于室内场景,或者是任何带类别的识别任务,都会有class average accuracy. 大家想当然的翻译成类平
相关 目标检测问题中的“召回率Recall”、“精确率Precision”
继上篇mAP之后,想彻底梳理一下基本概念,今天来搞一搞“召回率”、“精确率” 几个概念 假设有一个测试集中包含了n个小猫和小狗的图片,我们的目标是找出所有的猫。目标是:
相关 准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F值(F-Measure)
TP(True Positive,真正的正):正预测为正 TN(True Negative, 真正的负):负预测为负 FP(False Positive,假的正):负预测为
还没有评论,来说两句吧...