面试官:说说你对算法中时间复杂度,空间复杂度的理解?如何计算?

亦凉 2022-09-12 00:11 47阅读 0赞

bcabcc2445c3c3a86960e2091aae989a.png

一、前言

算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别

衡量不同算法之间的优劣主要是通过「时间」和「空间」两个维度去考量:

  • 时间维度:是指执行当前算法所消耗的时间,我们通常用「时间复杂度」来描述。
  • 空间维度:是指执行当前算法需要占用多少内存空间,我们通常用「空间复杂度」来描述

通常会遇到一种情况,时间和空间维度不能够兼顾,需要在两者之间取得一个平衡点是我们需要考虑的

一个算法通常存在最好、平均、最坏三种情况,我们一般关注的是最坏情况

最坏情况是算法运行时间的上界,对于某些算法来说,最坏情况出现的比较频繁,也意味着平均情况和最坏情况一样差

二、时间复杂度

时间复杂度是指执行这个算法所需要的计算工作量,其复杂度反映了程序执行时间「随输入规模增长而增长的量级」,在很大程度上能很好地反映出算法的优劣与否

一个算法花费的时间与算法中语句的「执行次数成正比」,执行次数越多,花费的时间就越多

算法的复杂度通常用大O符号表述,定义为T(n) = O(f(n)),常见的时间复杂度有:O(1)常数型、O(log n)对数型、O(n)线性型、O(nlogn)线性对数型、O(n^2)平方型、O(n^3)立方型、O(n^k)k次方型、O(2^n)指数型,如下图所示:

abfe0199c18d4d34873bd6987534f377.png

从上述可以看到,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低,由小到大排序如下:

  1. Ο(1)<Ο(log n)<Ο(n)<Ο(nlog n)<Ο(n2)<Ο(n3)<…<Ο(2^n)<Ο(n!)

注意的是,算法复杂度只是描述算法的增长趋势,并不能说一个算法一定比另外一个算法高效,如果常数项过大的时候也会导致算法的执行时间变长

关于如何计算时间复杂度,可以看看如下简单例子:

  1. function process(n) {
  2. let a = 1
  3. let b = 2
  4. let sum = a + b
  5. for(let i = 0; i < n; i++) {
  6. sum += i
  7. }
  8. return sum
  9. }

该函数算法需要执行的运算次数用输入大小n的函数表示,即 T(n) = 2 + n + 1,那么时间复杂度为O(n + 3),又因为时间复杂度只关注最高数量级,且与之系数也没有关系,因此上述的时间复杂度为O(n)

又比如下面的例子:

  1. function process(n) {
  2. let count = 0
  3. for(let i = 0; i < n; i++){
  4. for(let i = 0; i < n; i++){
  5. count += 1
  6. }
  7. }
  8. }

循环里面嵌套循环,外面的循环执行一次,里面的循环执行n次,因此时间复杂度为 O(n*n*1 + 2) = O(n^2)

对于顺序执行的语句,总的时间复杂度等于其中最大的时间复杂度,如下:

  1. function process(n) {
  2. let sum = 0
  3. for(let i = 0; i < n; i++) {
  4. sum += i
  5. }
  6. for(let i = 0; i < n; i++){
  7. for(let i = 0; i < n; i++){
  8. sum += 1
  9. }
  10. }
  11. return sum
  12. }

上述第一部分复杂度为O(n),第二部分复杂度为O(n^2),总复杂度为max(O(n^2), O(n)) = O(n^2)

又如下一个例子:

  1. function process(n) {
  2. let i = 1; // ①
  3. while (i <= n) {
  4. i = i * 2; // ②
  5. }
  6. }

循环语句中以2的倍数来逼近n,每次都乘以2。如果用公式表示就是1 * 2 * 2 * 2 … * 2 <=n,也就是说2的x次方小于等于n时会执行循环体,记作2^x <= n,于是得出x<=logn

因此循环在执行logn次之后,便结束,因此时间复杂度为O(logn)

同理,如果一个O(n)循环里面嵌套O(logn)的循环,则时间复杂度为O(nlogn),像O(n^3)无非也就是嵌套了三层O(n)循环

三、空间复杂度

空间复杂度主要指执行算法所需内存的大小,用于对程序运行过程中所需要的临时存储空间的度量

除了需要存储空间、指令、常数、变量和输入数据外,还包括对数据进行操作的工作单元和存储计算所需信息的辅助空间

下面给出空间复杂度为O(1)的示例,如下

  1. let a = 1
  2. let b = 2
  3. let c = 3

上述代码的临时空间不会随着n的变化而变化,因此空间复杂度为O(1)

  1. let arr []
  2. for(i=1; i<=n; ++i){
  3. arr.push(i)
  4. }

上述可以看到,随着n的增加,数组的占用的内存空间越大

通常来说,只要算法不涉及到动态分配的空间,以及递归、栈所需的空间,空间复杂度通常为O(1),一个一维数组a[n],空间复杂度O(n),二维数组为O(n^2)

参考文献

  • https://juejin.cn/post/6844904167824162823\#heading-7
  • https://zhuanlan.zhihu.com/p/50479555
  • https://cloud.tencent.com/developer/article/1769988

--The End—

系列正在更新:2/18

点击下方卡片解锁更多

32ab29b7a3d62b20769652f13b01e442.png

创作不易,星标、点赞、在看 三连支持

发表评论

表情:
评论列表 (有 0 条评论,47人围观)

还没有评论,来说两句吧...

相关阅读

    相关 时间复杂空间复杂计算方式

    - 复杂度分析 - 数据结构与算法经常是放在一起讲,这两者是没办法独立的,因为算法是为了达到某种目的的一种实现方式,而数据结构是一种载体,也就是说算法必须依赖数据结构这种载体

    相关 时间复杂_空间复杂

    时间复杂度\_空间复杂度 主要说明以下3点: 1.算法效率 2.时间复杂度 3.空间复杂度 一、算法效率 算法效率分析分为两种:第一种是时间效率,第二种

    相关 时间复杂空间复杂简单理解

    首先,时间复杂度与空间复杂度是对立的,时间复杂度越低,空间复杂度就越高。我们在程序中通常采用以空间换时间的方式来提高项目运行效率。 一、时间复杂度 先给大家说一个最常见的简