发表评论取消回复
相关阅读
相关 机器学习-正则化(处理过拟合)
过拟合(overfitting) 在算法的实际应用中,并不是特征值越多越好,假设函数与训练数据集拟合的越完美越好,或者说其代价函数为0,但是在测试数据上的效果就很差了
相关 机器学习基础 - 偏度、正态化以及 Box-Cox 变换
1引言 对于数据挖掘、机器学习中的很多算法,往往会假设变量服从正态分布。例如,在许多统计技术中,假定误差是正态分布的。这个假设使得能够构建置信区间并进行假设检验。
相关 【机器学习】机器学习基础
一、机器学习概述 1、机器学习算法的判别依据 —— 数据类型 1. 离散型数据:由记录不同类别个体的数目所得到的数据,又称计数数据,所有这些数据全部都是整数,而且
相关 机器学习中的正则化
在机器学习的过程中我们会经常看到“正则化”这个词,比如我们看一些书籍、一些视频或者老师们讲课说的:给损失函数加一个正则化项,相当于给它一个惩罚...”等等,就给人一种很
相关 机器学习--正则化(Regularization)
参考文章:[机器学习--正则化(Regularization)][--_Regularization] 过拟合问题: 下图是一个回归问题 ![房价预测][20181031
相关 机器学习基础 - 偏度、正态化以及 Box-Cox 变换
1引言 对于数据挖掘、机器学习中的很多算法,往往会假设变量服从正态分布。例如,在许多统计技术中,假定误差是正态分布的。这个假设使得能够构建置信区间并进行假设检验。
相关 机器学习之正则化与交叉验证
时间:2014.07.01 地点:基地 \-----------------------------------------------------------------
相关 机器学习之正则化(Regularization)
转载自:[http://www.cnblogs.com/jianxinzhou/p/4083921.html][http_www.cnblogs.com_jianxinzhou
相关 机器学习笔记十九:正则化思想
参考: > <机器学习基石> ![这里写图片描述][SouthEast] ![这里写图片描述][SouthEast 1] ![这里写图片描述][SouthEast
还没有评论,来说两句吧...