新书上市 | 世界名校数据挖掘经典《斯坦福数据挖掘教程(第3版)》

柔情只为你懂 2022-10-07 00:40 76阅读 0赞

点击上方“Python爬虫与数据挖掘”,进行关注

回复“书籍”即可获赠Python从入门到进阶共10本电子书

此曲只应天上有,人间难得几回闻。

《斯坦福数据挖掘教程(第3版)》上架之后,这是我们第一次整篇文章介绍这本书。

03af70e790047194a54bc138c5dfa8f2.png

这本书相当受欢迎(前两个版本累计销量超过 5 万册),尤其是受学校青睐——在此也说声抱歉,出于出版时间的原因,很多学校依然采用了旧版作为教材;同时也请知悉,新版已上架,正在使用这本书作为教材的学校可以考虑更新了。

实际上,这本书已经在大家面前出过 2 次镜了,一次是 2020 年图灵奖公布的次日图灵君用一篇文章讲了讲图灵奖得主之一 Jeffrey Ullman 和这本书「不一样的」故事;一次是 423 活动那次,这本书在没有赶上大促优惠的情况下进入了新书畅销榜单。

除了是一本畅销多年的世界名校数据挖掘入门经典书,《斯坦福数据挖掘教程(第3版)》之于 Jeffrey Ullman 和弟子 Anand Rajaraman 还有特别的意义。那就是这本书原本只是作为开源电子版出版的,后来才有了纸质书的诞生,个中原因大家可以在文末链接阅读相关文章。

好了,回到这本书,我们继续说说它的缘起。本书源于Ullman 及弟子 Rajaraman 在斯坦福大学教授多年的一门季度课程——「多年」真的不是随便叫叫的,我去这本书的网站上看了看,斯坦福大学开设这门课程,最早可以追溯到 2000 年,着实佩服。

课程名为“Web 挖掘”(编号 CS345A),原本是为高年级研究生设计的,没成想高年级本科生也非常感兴趣,于是现在就成为本科生和研究生兼修的一门课程。Jure Leskovec 到斯坦福大学任职后,共同对相关材料进行了重新组织。他开设了一门有关网络分析的新课程 CS224W, 并为 CS345A 增加了一些内容,重新编号为 CS246。三位作者还开设了一门大规模数据挖掘的项目课程 CS341。目前本书包含了以上三门课程的所有教学内容。

7b0608861c057a2cfec942054b601cf7.png

图书核心特色

这本书核心的特色是:它是一本数据挖掘领域全景路线图式的入门参考技术书,下面解释一下关键词。

1.全景路线图

一方面可以让你了解数据挖掘这个大领域下的各个小领域;

另一方面让你可以纵览整个数据构建模型的过程,这个过程中你会遇到什么问题,尤其是从普通规模数据到极大规模数据发生了哪些状况,你的解决方案是如何转换的。

2.入门

跟上面一条紧密关联。普通书入门从简单操作开始,一步步来,读者见树木而不见森林,好书入门从全景图开始,教读者抓核心内容,对整个领域了然于胸之后深入自己感兴趣的关键点。而这本书介绍的正是高手入门之道,书中并没有每个细分领域的详细讲解,但是为你展示了最新的参考论文和进阶资料,方便你进一步探索。

3.技术

虽然有概念,但并非聚焦于概念,而是教你怎么用,可直接应用于实际的大规模数据挖掘工作——海量 Web 数据是目前大数据挖掘工作的核心,数据分析师、数据科学家、机器学习专家都不可错过。

67c90e3be112d1d0143901e8d1317846.png

接下来让我们来详细看看书中的内容。

图书核心内容

本书是关于数据挖掘的,但是主要关注极大规模数据的挖掘。“极大规模”的意思是,这些数据大到无法在内存中存放。因为本书重点强调数据的规模,所以例子大多来自 Web 本身或者 Web 上导出的数据。另外,本书从算法的角度来看待数据挖掘,即数据挖掘是将算法 应用于数据,而不是使用数据来“训练”某种类型的机器学习引擎。

本书的主要内容包括:

(1) 分布式文件系统和 MapReduce,其中后者用于创建在极大规模数据集上成功应用的并行算法;

(2) 相似性搜索,包括最小哈希和局部敏感哈希的关键技术;

(3) 数据流处理以及针对快速到达、须立即处理且易丢失的数据的专用算法;

(4) 搜索引擎技术,包括谷歌的 PageRank、链接作弊检测以及计算网页导航度(hub)和权威度(authority)的 HITS 方法;

(5) 频繁项集挖掘,包括关联规则、购物篮分析、A-Priori 算法及其改进;

(6) 极大规模高维数据集的聚类算法;

(7) Web 应用中的两个关键问题——广告管理和推荐系统;

(8) 对极大规模的图(特别是社会网络图)的结构进行分析和挖掘的算法;

(9) 通过降维来获得大规模数据集的重要性质的技术,包括 SVD 和隐性语义索引;

(10) 可以应用于极大规模数据的机器学习算法,包括感知机、支持向量机、梯度下降法、决策树和神经网络;

(11) 神经网络与深度学习,包括最重要的几个特例——卷积神经网络(CNN)、循环神经网络(RNN)和长短期记忆网络(LSTM)。

用思维导图展示一下图书的内容。

98318838849fa18e79e255e361892478.png

(放大可查看大图)

作译者团队

这本《斯坦福数据挖掘教程》与《数据挖掘导论(完整版)》同为国内读者最喜爱的数据挖掘入门书之一。作者团超级强大,第一作者是 AI 领域无人不知的 Jure Leskovec,他在图神经网络方面的研究用“顶尖”形容不为过。第三作者 Jeffrey Ullman 为 2020 年图灵奖得主,因在编程语言实现领域对基础算法和理论的贡献而获奖。

在翻译上,由国内知名 NLP 专家王斌老师担纲翻译,王斌老师独自翻译了前两个版本。到第 3 版,曾就读于斯坦福大学 Jure 实验室的王达侃老师加入,共同翻译。

8dc89c1284b3c04b83402bc372059229.png

Jure Leskovec(尤雷·莱斯科夫)

近年来最优秀的 AI 科学家之一(其实没有“之一”这两个字,估计 99% 人也不会反对,从这里你就知道 Jure 的实力了,有其他很多媒体专门写过 Jure 有多强大,回头我们转载一篇文章来看看)。

Pinterest 公司首席科学家,斯坦福大学计算机科学系副教授,研究方向为大型社交和信息网络的数据挖掘。

他的研究成果获得了很多奖项,如 Microsoft Research Faculty Fellowship、Alfred P. Sloan Fellowship 和 Okawa Foundation Fellowship,还获得了很多最佳论文奖,同时也被《纽约时报》《华尔街日报》《华盛顿邮报》《连线》及 NBC、CBC 等流行的社会媒体刊载。

他还创建了斯坦福网络分析平台(SNAP)。

Anand Rajaraman(阿南德·拉贾拉曼)

数据库和 Web 技术领域领军者,硅谷连续创业者和风险投资人,斯坦福大学计算机科学系助理教授。

自 1996 年起创立过多家公司,这些公司先后被亚马逊、谷歌和沃尔玛集团收购,而他本人历任亚马逊技术总监、沃尔玛负责全球电子商务业务的副总裁。之后创立了风投公司 Milliways Ventures 和 Rocketship VC,投资过 Facebook、Lyft 等众多公司。

作为学者,他主要研究数据库系统、Web 和社交媒体,他的研究论文在学术会议上获得了多个奖项,他在 2012 年被《快公司》杂志列入“商界最具创造力 100 人”。

Jeffrey Ullman(杰弗里·厄尔曼)

计算机科学家,美国国家工程院院士,2020 年图灵奖得主。

早年在贝尔实验室工作,之后任教于普林斯顿大学,十年后加入斯坦福大学直至退休,一生的科研、著书和育人成果卓著。

他是 ACM 会员,曾获 SIGMOD 创新奖、高德纳奖、冯诺依曼奖等多项科研大奖;合著有“龙书”《编译原理》、数据库名著《数据库系统实现》等多部经典著作。

Ullman 培养了很多了不起的学生,其中包括谷歌联合创始人 Sergey Brin,本书第二作者也是他的得意弟子。目前担任 Gradiance 公司 CEO。

王斌博士
小米 AI 实验室主任,NLP 首席科学家。中国中文信息学会理事,《中文信息学报》编委。

加入小米公司之前,是中科院研究员、博导及中科院大学教授。译有《信息检索导论》《大数据:互联网大规模数据挖掘与分布式处理》和《机器学习实战》等书。

王达侃
优刻得 AI 部门负责人,曾任 WeWork Research & Applied Science 中国区负责人,并曾在 LinkedIn、Twitter 和微软亚洲研究院负责 AI 以及大数据方向的研发工作。

硕士毕业于斯坦福大学计算机系,本科毕业于上海交通大学 ACM 班。

国内外读者好评

| Amazon 读者

斯坦福大学“海量数据挖掘”公开课课参考书

3d61364f8d71be3e8101c27e7f6aa9d0.png

我买这本书是为了参加斯坦福大学 MMDS 的在线课程,但后来决定全面阅读这本书(课程不包括一些高级主题)。这本书的内容是非常容易理解的。例如,在第 5 章中,作者介绍了 PageRank 算法,不同于一般书通过概率和线性代数(马尔科夫链和特征向量)来介绍它,他们稍微介绍了一下理论,之后提供了许多例子,所以这本书的实用性深得我心。概率论和线性代数方面的知识会有帮助,但不强求,不过知道一些非常基本的概念,如矩阵乘法等是必需的。

这本书涵盖的主题相当广泛,从 MapReduce 和位置敏感哈希(LSH),再到图和大规模机器学习算法。朋友们,值得拥有。

数据挖掘就看这本书(某大学教授)

922a841b2f288a0bb36666e594b43137.png

这本书是我在数据挖掘方法方面的首选参考书。名声在外的作者团队们对于自己的写作主题门儿清。这些材料来自于作者所教授的几门斯坦福大学计算机科学课程。就第 3 版而言,写作清晰、简洁,无重大错误。

本书涵盖了许多最常用的数据挖掘方法的理论和实践方面。作者不仅讨论了这些算法如何工作的理论,还对其局限性和常见的失败进行了深入探讨。

我把这本书作为我教授的课程的补充教材。该书的处理水平适合高级本科生和初级研究生。

| 豆瓣读者

真正讲大数据处理思路的书

f6a75a4d6e2b10ddfc6a3c30568a30fe.png

最好的数据挖掘图书之一

01cfaa5e3d969f2d87632661910d8b33.png

回到图书

20f82f40438b37d0fed9a62cf64b0885.png

作者:Jure Leskovec,Anand Rajaraman,Jeffrey Ullman

译者:王斌 , 王达侃

| 图书特色

  • 当今 AI 领域最知名的学者之一Jure Leskovec、2020 年图灵奖得主 Jeffrey Ullman 及弟子作品
  • 国内知名 NLP 专家王斌、AI 青年学者王达侃执笔翻译
  • “数据挖掘全景式入门参考书”,源自斯坦福大学公开课“CS246:海量数据挖掘”“CS224W:图机器学习”和“CS341:项目实战课”
  • 配套资源丰富,包括开源英文原书 PDF、PPT、视频讲解

本书源自斯坦福大学公开课“CS246:海量数据挖掘”“CS224W:图机器学习”和“CS341:项目实战课”,主要关注极大规模数据的挖掘。书中包括分布式文件系统、相似性搜索、搜索引擎技术、频繁项集挖掘、聚类算法、广告管理及推荐系统、社会网络图挖掘和大规模机器学习等主要内容。第3版新增了决策树、神经网络和深度学习等内容。几乎每节都有对应的习题,以此来巩固所讲解的内容。读者还可以从网上获取相关拓展资料。

5f2b577d2ea7266b3d8d032ca8fbdc8c.png

数据挖掘是数据时代的一项必杀技

这本书可以带你入门

—----—-—-—---— 送书 —----—---—-—---

内容简介

1、如正文所介绍的那样。本次赠书活动由图灵教育大力支持,一共送书图书3本,欢迎大家积极参与,具体活动规则见下方~

活动规则

参与方式:在下方公众号后台回复 “送书”关键字,记得是“送书”二字哈,即可参与本次的送书活动。

公布时间:2021年6月18号(周五)晚上20点

领取事宜:请小伙伴添加小助手微信: WebFighting,或者扫码添加好友。添加小助手的每一个人都可以领取一份Python学习资料,更重要的是方便联系。

3135db7f3e481cf651449a8e1902ec07.png

注意事项:一定要留意微信消息,如果你是幸运儿就尽快在小程序中填写收货地址、书籍信息。一天之内没有填写收货信息,送书名额就转给其他人了噢,欢迎参与

发表评论

表情:
评论列表 (有 0 条评论,76人围观)

还没有评论,来说两句吧...

相关阅读

    相关 数据挖掘十大经典算法

    本文主要分析皆来自其他资料,借用较为权威的总结来对我已经学习的这些经典算法做一个极为精简的概述(根据自身经验有一定修改),另外同时附上机器学习实战中作者对各种算法的评价。另外机

    相关 8大经典数据挖掘算法

    大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入