发表评论取消回复
相关阅读
相关 “机器学习实战”刻意练习——分类问题:逻辑(Logistic)回归
参考: [Python3《机器学习实战》学习笔记(六):Logistic回归基础篇之梯度上升算法 - Jack-Cui - CSDN博客][Python3_Logistic
相关 机器学习_Softmax回归(多分类问题)
在读文章之前,先读[Logistic回归][Logistic],Logistic回归是Softmax回归的特殊情况,即二分类情况。 softmax函数的本质就是将一个K维的
相关 机器学习_回归和分类的区别
回归和分类的区别 首先假设线性回归是个黑盒子,那按照程序员的思维来说,这个黑盒子就是个函数。我们只要往这个函数传一些参数作为输入,就能得到一个结果作为输出。那回归是什么意
相关 机器学习分类和回归问题
机器学习分类和回归问题 监督学习问题主要可以划分为两类,即 分类问题 和 回归问题 分类问题预测数据属于哪一类别。 —— 离散 回归问题根据数据预测一个数值。 ——
相关 【机器学习】基于概率论的分类方法和Logistic回归
![在这里插入图片描述][resize_m_lfit_w_962_pic_center] 文章目录 1 朴素贝叶斯 2 朴素贝叶斯图像像素分割实战——
相关 Spark机器学习之分类与回归
本页面介绍了分类和回归的算法。 它还包括讨论特定类别的算法的部分,如线性方法,树和集合体。 目录 分类 Classification \-----------逻
相关 机器学习(2)回归与分类
1 回归与分类 线性回归的损失函数选择时候,基于误差分布的客观假定,通过最大似然的计算法则得出了损失函数。其实在对一个样本分布进行建模和预测的时候,更本质上来讲是对一个
相关 机器学习2 分类与逻辑回归
分类问题和线性回归问题很像,只是在分类问题中我们预测的 y y 值包含在一个小的离散数据集里。首先,认识一下二元分类(binary classification),在二元分
相关 PySpark机器学习-分类与回归实例
1. 二元分类 预测网页是 暂时性的, 还是 长青的 (ephemeral, evergreen) 》读取文件,创建DataFrame 格式数据 from p
还没有评论,来说两句吧...