发表评论取消回复
相关阅读
相关 吴恩达机器学习笔记week1
目录: 1.机器学习是什么? 2.监督学习 3.无监督学习 4.线性回归 5.代价函数 5.1 代价函数的直观理解1 5.2 代价函数的直观理解2
相关 【吴恩达机器学习笔记】4神经网络
8 神经网络:表述(Neural Networks: Representation) 8.1 非线性假设(Non-linear hypothe) 线性回归和逻辑回归
相关 吴恩达机器学习课程14——异常检测
目录 异常检测 高斯分布(即正态分布) 基础 参数估计 异常检测算法 评估异常检测算法 异常检测VS监督学习
相关 吴恩达机器学习课程09——机器学习系统设计
目录 误差分析 偏斜类(不对称性分类)的误差评估 精确度和召回率的权衡 大量训练数据 如有错误,请不吝指正~ --------------
相关 【吴恩达机器学习笔记】9异常检测、推荐系统
15异常检测(Anomaly Detection) 15.1 问题的动机(Problem Motivation) 异常检测(Anomaly detection)问题
相关 吴恩达机器学习系列22:异常检测
现在有一个网站,为了防止该网站被人恶意攻击,你采取了以下措施。给每个用户建立用户画像,记录他的一些操作,例如:打字速度,浏览时间,点击网页次数等等... 可以将这些特征建立一个
相关 Stanford 机器学习(吴恩达)课程小笔记
机器学习的定义 > “A computer program is said to learn from experience E with respect to some
相关 吴恩达《机器学习》课程总结(16)_推荐系统
16.1问题形式化 (1)讲推荐系统的原因主要有以下几点: 1.推荐系统是一个很重要的机器学习的应用,虽然在学术界上占比较低,但是在商业应用中非常的重要,占有很高的优先
相关 吴恩达机器学习
机器学习(Machine Learning)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科,专门研究计算机怎样模拟或实现人类的学习行为,以获
还没有评论,来说两句吧...