发表评论取消回复
相关阅读
相关 【深度学习】学习率及多种选择策略
如果我们对每次迭代的学习进行记录,并绘制学习率(对数尺度)与损失,我们会看到,随着学习率的提高,从某个点开始损失会停止下降并开始提高。在「训练神经网络的周期性学习速率」[...
相关 深度学习: 学习率 (learning rate)
Introduction 学习率 (learning rate),控制 模型的 学习进度 : ![这里写图片描述][SouthEast] lr 即 stride (
相关 【深度学习】如何找到最优学习率
经过了大量炼丹的同学都知道,超参数是一个非常玄乎的东西,比如batch size,学习率等,这些东西的设定并没有什么规律和原因,论文中设定的超参数一般都是靠经验决定的。但是超参
相关 使用scheduler动态调整学习率
scheduler 的使用 from torch.optim.lr_scheduler import ReduceLROnPlateau ... sc
相关 pytorch 动态调整学习率
背景 深度炼丹如同炖排骨一般,需要先大火全局加热,紧接着中火炖出营养,最后转小火收汁。 本文给出炼丹中的 “火候控制器”-- 学习率的几种调节方法,框架基于 `pytor
相关 深度学习中学习率和batchsize对模型准确率的影响
> 本内容来自其他的人解析,参考链接在最后的注释。 1. 前言 目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下: ![在这里插入图片
相关 深度学习:batch_size和学习率 及如何调整
[\-柚子皮-][-_-] 学习率衰减 1 在神经网络的训练过程中,当accuracy出现震荡或loss不再下降时,进行适当的学习率衰减是一个行之有效的手段,很多时候能
相关 pytorch学习率调整规则
PyTorch学习率调整策略通过torch.optim.lr\_scheduler接口实现。PyTorch提供的学习率调整策略分为三大类,分别是 a. 有序调整:等间隔调整(
相关 深度学习实战(八)——如何设置学习率
一、学习率的介绍 学习率是深度学习中的一个重要的超参,如何调整学习率是训练出好模型的关键要素之一。在通过SGD求解问题的极小值时,梯度不能太大,也不能太小。太
还没有评论,来说两句吧...