发表评论取消回复
相关阅读
相关 Quantization for Rapid Deployment of Deep Neural Networks
Quantization for Rapid Deployment of Deep Neural Networks Jun Haeng Lee, Sangwon Ha,
相关 Deep Neural Networks for Object Detection Thinking
Deep Neural Networks for Object Detection Thinking 这篇文章纯粹是以自己观点来看这篇论文,局限于自己的知识水平和能力,肯
相关 DeepInspect: A Black-box Trojan Detection and Mitigation Framework for Deep Neural Networks笔记
Challenges: C1.后门的隐蔽性使得他们很难通过功能测试functional testing来识别(这种测试通常会使用测试准确率作为检测标准)
相关 Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks笔记
Code: https://github.com/mzweilin/EvadeML-Zoo Feature squeezing: reducing the color
相关 Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks 文章目录 Aggrega
相关 Bag of Freebies for Training Object Detection Neural Networks
李沐等将目标检测绝对精度提升 5%,不牺牲推理速度。 目标检测无疑是计算机视觉领域最前沿的应用之一,吸引了各个领域诸多研究者的目光。最前沿的检测器,包括类似 RCNN 的单(
相关 [剪枝]Channel Pruning for Accelerating Very Deep Neural Networks
\[ICCV2017\] Channel Pruning for Accelerating Very Deep Neural Networks arxiv:[https
相关 《RefineDet:Single-Shot Refinement Neural Network for Object Detection》论文笔记
代码地址:[RefineDet][] 相关链接: 1. [RefineDet:(1)训练脚本解析][RefineDet_1] 2. [RefineDet:(2)检测部分
相关 Relation Networks for Object Detection
转自:[https://blog.csdn.net/u014380165/article/details/80779432][https_blog.csdn.net_u0143
相关 《Relation Networks for Object Detection》论文笔记
代码地址:[Relation-Networks-for-Object-Detection][] 1. 概述 > 一直以来都认为对检测目标之间的联系进行建模会帮助提升目标
还没有评论,来说两句吧...