Python+OpenCV:图像对比度受限自适应直方图均衡化(CLAHE, Contrast Limited Adaptive Histogram Equalization)

小鱼儿 2022-12-21 06:21 208阅读 0赞

Python+OpenCV:图像对比度受限自适应直方图均衡化(CLAHE, Contrast Limited Adaptive Histogram Equalization)

  1. ####################################################################################################
  2. # 图像对比度受限自适应直方图均衡化(CLAHE, Contrast Limited Adaptive Histogram Equalization)
  3. def lmc_cv_image_clahe():
  4. """
  5. 函数功能: 图像对比度受限自适应直方图均衡化(CLAHE, Contrast Limited Adaptive Histogram Equalization)。
  6. """
  7. stacking_images = []
  8. # 图像对比度受限自适应直方图均衡化(CLAHE, Contrast Limited Adaptive Histogram Equalization)
  9. image_file_name = ['D:/99-Research/Python/Image/Photo1.jpg', 'D:/99-Research/Python/Image/Photo2.jpg',
  10. 'D:/99-Research/Python/Image/Photo3.jpg', 'D:/99-Research/Python/Image/Lena.jpg']
  11. for i in range(len(image_file_name)):
  12. # 读取图像
  13. image = lmc_cv.imread(image_file_name[i])
  14. image = lmc_cv.cvtColor(image, lmc_cv.COLOR_BGR2GRAY)
  15. # create a CLAHE object (Arguments are optional).
  16. clahe = lmc_cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
  17. clahe_image = clahe.apply(image)
  18. # stacking images side-by-side
  19. stacking_image = np.hstack((image, clahe_image))
  20. stacking_images.append(stacking_image)
  21. # 显示图像
  22. pyplot.figure('CLAHE, Contrast Limited Adaptive Histogram Equalization')
  23. for i in range(len(stacking_images)):
  24. pyplot.subplot(2, 2, i + 1)
  25. pyplot.imshow(stacking_images[i], 'gray')
  26. pyplot.xticks([])
  27. pyplot.yticks([])
  28. pyplot.show()
  29. # 根据用户输入保存图像
  30. if ord("q") == (lmc_cv.waitKey(0) & 0xFF):
  31. # 销毁窗口
  32. pyplot.close()
  33. return

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2xpdWJpbmc4NjA5_size_16_color_FFFFFF_t_70

发表评论

表情:
评论列表 (有 0 条评论,208人围观)

还没有评论,来说两句吧...

相关阅读