发表评论取消回复
相关阅读
相关 深度学习常用知识梯度下降学习率和反向传播
目录 1 梯度下降 2 学习率 3 反向传播 -------------------- 1 梯度下降 梯度下降法主要用于单个参数的取值。假如损
相关 深度学习之梯度下降法
代价函数 在一开始,我们会完全随机地初始化所有的权重和偏置值。可想而知,这个网络对于给定的训练示例,会表现得非常糟糕。例如输入一个3的图像,理想状态应该是输出层3这个点最
相关 AI入门:反向传播和梯度下降
上一节中提到,分类函数是神经网络正向传播的最后一层。但是如果要进行训练,我们只有预测结果是不够的,我们需要拿预测结果跟真实值进行对比,根据对比结果判断我们的神经网络是不是够好。
相关 深度学习的正、反向传播与梯度下降的实例
采用3层的全连接网络,首先正向传播一次并计算误差,之后反向传播一次更新参数,最后再次正向传播并计算误差 全连接网络的具体结构如下: ![watermark_type_ZmF
相关 梯度下降和反向传播的理解
其实我们最终的目标,是为了得到一组权值值,使得损失函数的输出达到最小值,即求损失函数最小值, 求损失函数最小值,可以有: 1. 直接通过求它的解析解(最小二乘法,腾讯课堂
相关 深度学习 Optimizer 梯度下降优化算法总结
点击上方“小白学视觉”,选择加"星标"或“置顶” 重磅干货,第一时间送达![59e71b5c2a06463220a6042bdd83cb38.png][] 来源:https
相关 深度学习基础------前向传播与反向传播
当前,深度学习已经应用到很多领域:无人驾驶汽车,黑科技以及图像分类等等,这些前沿的科技也面临许多挑战,如无人驾驶汽车需要进行物体的检测、行人的检测、标志的识别以及速度识别等等;
相关 【深度学习】Dropout、正反向传播、计算图等的介绍和实现(Pytorch)
【深度学习】Dropout、正反向传播、计算图等的介绍和实现(Pytorch) ![在这里插入图片描述][resize_m_lfit_w_962_pic_center]
相关 坐标下降与梯度下降
本文是对坐标上升、坐标下降及梯度下降的关系的个人总结,欢迎大家讨论。 1.坐标上升法:坐标上升与坐标下降可以看做是一对,坐标上升是用来求解max最优化问题,坐
还没有评论,来说两句吧...