发表评论取消回复
相关阅读
相关 监督学习与无监督学习
1.监督学习 监督学习(Supervised learning)是通过已有的训练样本(数据集),已知输入和输出之间对应关系。去训练得到一个最优的模型,再利用这个模型将所有
相关 ReID:无监督及领域自适应的目标重识别概述
无监督(unsupervised)及领域自适应(domain adaptive)的目标重识别是目标重识别领域中两个重要的研究方向,同时二者又关系密切。本文中部分配图和内容参考[
相关 【行人重识别】fast-reid复现(20210111)
参考代码: [https://github.com/JDAI-CV/fast-reid][https_github.com_JDAI-CV_fast-reid] 0.环境
相关 最强无监督行人重识别方法 Cluster Contrast ReID
[https://github.com/xiaomingzhid/sskd][https_github.com_xiaomingzhid_sskd] [GitHub - JD
相关 自适应滤波器及LMS自适应算法的理解
> > 分享一篇以前写现代信号处理的课程论文。 > > > > ———————————————————— ![SouthEast][] [SouthEast]
相关 有监督和无监督
1、有监督学习:通过已有的训练样本去训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现预测和分类的目的,也就具有了对未知数据进行预测
相关 监督学习和无监督学习
自理解机器学习的概念时,没有深刻理解监督学习和无监督学习的区别,在网上查找了部分资料,现在总结如下: 总的来说,机器学习任务将根据训练样本是否有label,可以分为监督学习和
相关 监督学习、无监督学习、半监督学习概述
前言 机器学习分为:监督学习,无监督学习,半监督学习(也可以用hinton所说的强化学习)等。 在这里,主要理解一下监督学习和无监督学习。 监督学习(supervi
相关 无监督学习
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddl
还没有评论,来说两句吧...