发表评论取消回复
相关阅读
相关 准确率、精确率、召回率和F-score
一、TP、FP、FN和TN 举例来说,用血压值来检测一个人是否有高血压,测出的血压值是连续的实数(从0~200都有可能),以收缩压140/舒张压90为阈值,阈值以上便诊断
相关 机器学习中的混淆矩阵,准确率,精确率,召回率,F1,ROC/AUC,AP/MAP
评价指标的引出 为什么要引出这么多评价指标,它是基于什么样的需求? 在生活中,最常用的就是准确率,因为它定义简单而且比较通用,但在机器学习中,它往往不是评估模型的最佳工
相关 机器学习 精准率 — 召回率 — 准确率 — F1-Score
准确率 、召回率 、精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象
相关 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(
相关 机器学习分类指标:精确率、准确率、召回率详解
混淆矩阵 在介绍具体的定义之前先了解一些混淆矩阵(confusion matrix): 一种 NxN 表格,用于总结分类模型的预测效果;即标签和模型预测的分类之间的关
相关 如何理解准确率、召回率和精确率?
一、概念 -------------------- 精确率(precision):针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。 召回率(
相关 准确率,精确率,召回率和F1值
机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估`(Evaluation)`是一个必要的 工作,而其评价指标往往有如下几点:准确率`(Accuracy)`
相关 准确率、精确率、召回率、f1、ROC曲线
准确率、精确率、召回率、f1曲线、ROC曲线 T(True)、F(False)、P(Positive)、N(Negative) 一
相关 准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F值(F-Measure)
TP(True Positive,真正的正):正预测为正 TN(True Negative, 真正的负):负预测为负 FP(False Positive,假的正):负预测为
相关 sklearn计算准确率、精确率、召回率、F1 score
详细请看[https://blog.csdn.net/hfutdog/article/details/88085878][https_blog.csdn.net_hfutdo
还没有评论,来说两句吧...