发表评论取消回复
相关阅读
相关 精确率和召回率
如果还不明白精确率和召回率,这是一篇很易懂文章。 一.定义辨析 刚开始接触这两个概念的时候总搞混,时间一长就记不清了。 实际上非常简单,精确率是针对我们预测结果而言的
相关 朴素贝叶斯 混淆矩阵,2分类下的混淆矩阵,精确率与召回率,F1-score
目录 1.混淆矩阵 2.精确率(Precision)与召回率(Recall) 3. F1-score 4.sklearn API接口 参考文档 ----------
相关 贝叶斯分类(轻松理解朴素贝叶斯与半朴素贝叶斯)
贝叶斯分类是一类分类[算法][Link 1]的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章
相关 机器学习 精准率 — 召回率 — 准确率 — F1-Score
准确率 、召回率 、精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象
相关 真假正负例、混淆矩阵、ROC曲线、召回率、准确率、F值、AP
一、假正例和假负例 假正例(False Positive):预测为1,实际为0的样本 假负例(False Negative):预测为0,实际为1的样本 实际预测中,那些
相关 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(
相关 朴素贝叶斯分类
背景 > 我们先举一个例子,关于向天上抛硬币的实验,有一个训练集\{ h,t,x,t,t,t,t\} 。那么我们通过这个训练集预测下一个抛的结果就应该是t,因为P(t)=
相关 准确率,精确率,召回率和F1值
机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估`(Evaluation)`是一个必要的 工作,而其评价指标往往有如下几点:准确率`(Accuracy)`
相关 准确率、精确率、召回率、f1、ROC曲线
准确率、精确率、召回率、f1曲线、ROC曲线 T(True)、F(False)、P(Positive)、N(Negative) 一
相关 sklearn计算准确率、精确率、召回率、F1 score
详细请看[https://blog.csdn.net/hfutdog/article/details/88085878][https_blog.csdn.net_hfutdo
还没有评论,来说两句吧...