发表评论取消回复
相关阅读
相关 高数——偏导数
偏导数 在一元函数中,导数就是函数的变化率。对于二元函数研究它的“变化率”,由于自变量多了一个,情况就要复杂的多。 在 xOy 平面内,当动点由 P(x0,y0) 沿不
相关 高数——高阶导数
高阶导数的用处 高阶导数非常有用,二阶导可以判断函数图像的凹凸性;泰勒级数公式是用系数含有n阶导的x的幂次方表示的,而泰勒级数的作用非常强大,它可以把非常复杂的函数变成容
相关 高数——导数的计算
![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 高数——导数的意义
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限
相关 大数,高精度计算---大数乘法
大数是算法语言中的数据类型无法表示的数,其位数超过最大数据类型所能表示的范围,所以,在处理大数问题时首先要考虑的是怎样存储大数,然后是在这种存储方式下其处理的实现方法。 一般
相关 大数,高精度计算---大数减法
大数是算法语言中的数据类型无法表示的数,其位数超过最大数据类型所能表示的范围,所以,在处理大数问题时首先要考虑的是怎样存储大数,然后是在这种存储方式下其处理的实现方法。 一般
相关 大数,高精度计算---大数除法
大数是算法语言中的数据类型无法表示的数,其位数超过最大数据类型所能表示的范围,所以,在处理大数问题时首先要考虑的是怎样存储大数,然后是在这种存储方式下其处理的实现方法。 一般
相关 大数,高精度计算---高精度幂次
大数是算法语言中的数据类型无法表示的数,其位数超过最大数据类型所能表示的范围,所以,在处理大数问题时首先要考虑的是怎样存储大数,然后是在这种存储方式下其处理的实现方法。 一般
还没有评论,来说两句吧...