发表评论取消回复
相关阅读
相关 卷积神经网络CNN、感受野、边缘检测、卷积层(零填充padding、步长、多通道卷积、多卷积核)、池化层Pooling、全连接层
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 卷积神经网络学习路线(五)| 卷积神经网络参数设置,提高泛化能力?
前言 这是卷积神经网络学习路线的第五篇文章,主要为大家介绍一下卷积神经网络的参数设置,调参技巧以及被广泛应用在了哪些领域,希望可以帮助到大家。 卷积神经网络的参数设置
相关 卷积神经网络学习路线(三)| 盘点不同类型的池化层、1*1卷积的作用和卷积核是否一定越大越好?
前言 这是卷积神经网络学习路线的第三篇,这一篇开始盘点一下池化层的不同类型和1\1卷积的作用。 池化层的不同类型 池化通常也被称为下采样(Downsampling
相关 卷积神经网络学习路线(二)| 卷积层有哪些参数及常用卷积核类型盘点?
前言 上一篇推文介绍了卷积神经网络的组成层以及卷积层是如何在图像中起作用的,推文地址为:https://mp.weixin.qq.com/s/MxYjW02rWfRKPM
相关 卷积神经网络学习路线(一)| 卷积神经网络的组件以及卷积层是如何在图像中起作用的?
前言 这是卷积神经网络学习路线的第一篇文章,这篇文章主要为大家介绍卷积神经网络的组件以及直观的为大家解释一下卷积层是如何在图像中发挥作用的。 卷积神经网络的组件
相关 卷积神经网络的下采样:步进卷积、最大池化
![20191009191333910.png][][个人主页 ][Link 1] -------------------- 1.[window下安装 Keras、Te
相关 卷积神经网络-卷积层
卷积层的一些性质: ( 1 )输入数据体的尺寸是 W1 \ H1 \ D1。 ( 2 ) 4 个超参数:滤波器数K, 滤波器 空间 尺寸F, 滑动
相关 如何理解卷积神经网络(CNN)中的卷积和池化?
目录 5.1 二维卷积层 5.1.1 二维互相关运算 5.1.2 二维卷积层 5.1.3 图像中物体边缘检测 5.1.4 通过数据学习核数组 5.1.5 互相关运算
相关 1*1卷积核在卷积神经网络中的作用
1\1卷积过滤器和正常的过滤器一样,唯一不同的是它的大小是1\1,没有考虑在前一层局部信息之间的关系。最早出现在 Network In Network的论文中 ,使用1\1卷积
相关 卷积神经网络——输入层、卷积层、激活函数、池化层、全连接层
转自:[https://blog.csdn.net/qq\_27022241/article/details/78289083][https_blog.csdn.net_qq_
还没有评论,来说两句吧...