import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import warnings
import sklearn
from sklearn.linear_model import LogisticRegressionCV
from sklearn.linear_model.coordinate_descent import ConvergenceWarning
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import label_binarize
from sklearn import metrics
# 设置字符集,防止中文乱码
mpl.rcParams['font.sans-serif']=[u'simHei']
mpl.rcParams['axes.unicode_minus']=False
# 拦截异常
warnings.filterwarnings(action = 'ignore', category=ConvergenceWarning)
# 数据加载
path = "datas/iris.data"
names = ['sepal length', 'sepal width', 'petal length', 'petal width', 'cla']
df = pd.read_csv(path, header=None, names=names)
df['cla'].value_counts()
df.head()

def parseRecord(record):
result=[]
r = zip(names,record)
for name,v in r:
if name == 'cla':
if v == 'Iris-setosa':
result.append(1)
elif v == 'Iris-versicolor':
result.append(2)
elif v == 'Iris-virginica':
result.append(3)
else:
result.append(np.nan)
else:
result.append(float(v))
return result
# 1. 数据转换为数字以及分割
# 数据转换
datas = df.apply(lambda r: parseRecord(r), axis=1)
# 异常数据删除
datas = datas.dropna(how='any')
# 数据分割
X = datas[names[0:-1]]
Y = datas[names[-1]]
# 数据抽样(训练数据和测试数据分割)
X_train,X_test,Y_train,Y_test = train_test_split(X, Y, test_size=0.4, random_state=0)
print ("原始数据条数:%d;训练数据条数:%d;特征个数:%d;测试样本条数:%d" % (len(X), len(X_train), X_train.shape[1], X_test.shape[0]))

# 2. 数据标准化
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
# 3. 特征选择
# 4. 降维处理
# 5. 模型构建
lr = LogisticRegressionCV(Cs=np.logspace(-4,1,50), cv=3, fit_intercept=True, penalty='l2', solver='lbfgs', tol=0.01, multi_class='multinomial')
# solver可选:‘newton-cg’, 'lbfgs', 'liblinear', 'sag'(mini-batch),默认为liblinear
lr.fit(X_train, Y_train)

# 6. 模型效果输出
# 将正确的数据转换为矩阵形式
y_test_hot = label_binarize(Y_test,classes=(1,2,3))
# 得到预测的损失值
lr_y_score = lr.decision_function(X_test)
# 计算ROC的值
lr_fpr, lr_tpr, lr_threasholds = metrics.roc_curve(y_test_hot.ravel(),lr_y_score.ravel())
# threasholds阈值
# 计算AUC的值
lr_auc = metrics.auc(lr_fpr, lr_tpr)
print ("Logistic算法R值:", lr.score(X_train, Y_train))
print ("Logistic算法AUC值:", lr_auc)
# 7. 模型预测
lr_y_predict = lr.predict(X_test)

# KNN算法实现
# a. 模型构建
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, Y_train)
# b. 模型效果输出
# 将正确的数据转换为矩阵形式
y_test_hot = label_binarize(Y_test,classes=(1,2,3))
# 得到预测的损失值
knn_y_score = knn.predict_proba(X_test)
# 计算ROC的值
knn_fpr, knn_tpr, knn_threasholds = metrics.roc_curve(y_test_hot.ravel(),knn_y_score.ravel())
# 计算AUC的值
knn_auc = metrics.auc(knn_fpr, knn_tpr)
print ("KNN算法R值:", knn.score(X_train, Y_train))
print ("KNN算法AUC值:", knn_auc)
# c. 模型预测
knn_y_predict = knn.predict(X_test)
knn_y_score

# 画图1:ROC曲线画图
plt.figure(figsize=(8, 6), facecolor='w')
plt.plot(lr_fpr,lr_tpr,c='r',lw=2,label=u'Logistic算法,AUC=%.3f' % lr_auc)
plt.plot(knn_fpr,knn_tpr,c='g',lw=2,label=u'KNN算法,AUC=%.3f' % knn_auc)
plt.plot((0,1),(0,1),c='#a0a0a0',lw=2,ls='--')
# 设置X轴的最大和最小值
plt.xlim(-0.01, 1.02)
# 设置y轴的最大和最小值
plt.ylim(-0.01, 1.02)
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlabel('False Positive Rate(FPR)', fontsize=16)
plt.ylabel('True Positive Rate(TPR)', fontsize=16)
plt.grid(b=True, ls=':')
plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title(u'鸢尾花数据Logistic和KNN算法的ROC/AUC', fontsize=18)
plt.show()

# 画图2:预测结果画图
x_test_len = range(len(X_test))
plt.figure(figsize=(12, 9), facecolor='w')
plt.ylim(0.5,3.5)
plt.plot(x_test_len, Y_test, 'ro',markersize = 6, zorder=3, label=u'真实值')
plt.plot(x_test_len, lr_y_predict, 'go', markersize = 10, zorder=2, label=u'Logis算法预测值,$R^2$=%.3f' % lr.score(X_test, Y_test))
plt.plot(x_test_len, knn_y_predict, 'yo', markersize = 16, zorder=1, label=u'KNN算法预测值,$R^2$=%.3f' % knn.score(X_test, Y_test))
plt.legend(loc = 'lower right')
plt.xlabel(u'数据编号', fontsize=18)
plt.ylabel(u'种类', fontsize=18)
plt.title(u'鸢尾花数据分类', fontsize=20)
plt.show()

还没有评论,来说两句吧...