发表评论取消回复
相关阅读
相关 数据分析 - 线性回归,评估算法,梯度下降,逻辑回归数学公式
线性回归算法 数学概念 ▒ 回归 - 回归会得到最终的计算结果, 是一个确定性的结果 ▒ 分类 - 分类会进行分析给于一个结果的判断类别, 也是一个确定的结果
相关 回归算法实例三:基于梯度下降法实现线性回归算法
数据校验 def validate(X, Y): if len(X) != len(Y): raise Excepti
相关 逻辑回归的梯度下降公式详细推导过程
逻辑回归的梯度下降公式 逻辑回归的代价函数公式如下: J ( θ ) = − 1 m \[ ∑ i = 1 m y ( i ) log h θ ( x ( i )
相关 多元线性回归及梯度下降
一、线性回归定义 方法:线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(
相关 基于梯度下降算法求解线性回归
线性回归(Linear Regression) 梯度下降算法在机器学习方法分类中属于监督学习。利用它可以求解线性回归问题,计算一组二维数据之间的线性关系,假设有一组数据如
相关 逻辑回归与梯度下降详解
逻辑回归 Sigmoid函数: ![452][] Sigmoid函数 梯度: ![274][] 梯度的表达式 这个梯度是指:沿着x方向移动 ![93][] 个
相关 线性回归中的梯度下降
模拟梯度下降法 import numpy as np import matplotlib.pyplot as plt plot_x = np.l
相关 多元线性回归实现梯度下降
笔记: ![这里写图片描述][70] ![这里写图片描述][70 1] 代码实现: 在线性回归模型中使用梯度下降法 import numpy as
相关 线性回归与梯度下降法
原文:http://zhouyichu.com/machine-learning/Gradient-Descent.html 前言 最近在看斯坦福的《机器学习》的公开课
还没有评论,来说两句吧...