发表评论取消回复
相关阅读
相关 人工智能:损失函数(Loss Function)【平方损失(正态分布)、交叉熵损失(二项分布)、合页损失、对比损失】【衡量模型预测值和真实值的差异】【总体样本->值域分布律->似然函数->损失函数】
损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。 代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就
相关 损失函数:Center Loss
最近几年网络效果的提升除了改变网络结构外,还有一群人在研究损失层的改进,这篇博文要介绍的就是较为新颖的center loss。center loss来自ECCV2016的一篇论
相关 多分类样本类别分布不均衡-解决方案-损失函数(二):Long-Tail Learning via Logit Adjustment
利用深度学习做多分类在工业或是在科研环境中都是常见的任务。在科研环境下,无论是NLP、CV或是TTS系列任务,数据都是丰富且干净的。而在现实的工业环境中,数据问题常常成为困扰从
相关 多分类样本类别分布不均衡-解决方案-损失函数(一):Focal Loss
Focal Loss for Dense Object Detection ICCV2017 RBG和Kaiming大神的新作。 论文目标 我们知道object dete
相关 多分类的样本不均衡问题
利用深度学习做多分类在工业或是在科研环境中都是常见的任务。在科研环境下,无论是NLP、CV或是TTS系列任务,数据都是丰富且干净的。而在现实的工业环境中,数据问题常常成为困扰从
相关 阅读笔记之解决正负样本不均衡---《Focal loss for Dense Obiect Detection》
目录 一、论文信息 二、阅读笔记 三、个人理解 四、相似文章推荐 五、代码实现 -------------------- 一、论文信息 论文:《Focal
相关 Python解决数据样本类别分布不均衡问题
所谓不平衡指的是:不同类别的样本数量差异非常大。 数据规模上可以分为大数据分布不均衡和小数据分布不均衡。大数据分布不均衡:例如拥有1000万条记录的数据集中,其中占比50万条
相关 一文读懂深度学习中的损失函数(Loss Function):回归损失、二分类损失和多分类损失
文章目录 1 回归损失(Regression Loss) 1.1 均方误差(Mean Square Error,MSE)/ 二次损失(Quadratic
相关 多标签分类之非对称损失-Asymmetric Loss
论文:[Asymmetric Loss For Multi-Label Classification][] GitHub:[https://github.com/Alibab
相关 损失函数(loss function)
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒
还没有评论,来说两句吧...