发表评论取消回复
相关阅读
相关 交叉熵损失CrossEntropyLoss
在各种深度学习框架中,我们最常用的损失函数就是交叉熵,熵是用来描述一个系统的混乱程度,通过交叉熵我们就能够确定预测数据与真实数据的相近程度。交叉熵越小,表示数据越接近真实样本。
相关 【深度学习】两种交叉熵损失函数的异同
在学习李沐老师的《动手学深度学习》softmax算法的时候,发现其损失函数和机器学习里的逻辑回归交叉熵损失函数有些不一样,探究了一下背后的原因,总结如下: 首先看一下逻辑回归
相关 【深度学习】分类问题损失函数——交叉熵
神经网络模型的效果以及优化的目标是通过损失函数(loss function)来定义的。下面主要介绍适用于分类问题和回归问题的经典损失函数,并通过TensoFlow实现这些损失函
相关 交叉熵损失函数原理详解
多分类中,只对目标正样本求loss,其余不管。 知乎的这篇文章讲的也挺好: [https://zhuanlan.zhihu.com/p/35709485][https_zh
相关 交叉熵损失函数
一、香农熵 香农熵 1948 年,香农提出了“ [信息熵][Link 1]”(shāng) 的概念,才解决了对信息的量化度量问题。 一条
相关 TensorFlow:交叉熵损失函数
基础 损失函数 \[[机器学习中的损失函数][Link 1]\] 示例说明:计算multilabel时的BinaryCrossentropy tf.kera
相关 平方损失函数与交叉熵损失函数
1. 前言 在机器学习中学习模型的参数是通过不断损失函数的值来实现的。对于机器学习中常见的损失函数有:平方损失函数与交叉熵损失函数。在本文中将讲述两者含义与响应的运用区别
相关 神经网络的交叉熵损失函数
常见损失函数 0-1损失函数 L(Y,f(X))=\{ 1,0Y != f(X)Y = f(X) 平方损失函数 L(Y,f(X))=(
相关 交叉熵损失函数
1. Cross entropy 交叉熵损失函数用于二分类损失函数的计算,其公式为: ![573274-20190728165253168-15289458.png][]
相关 交叉熵损失函数
> 监督学习的两大种类是分类问题和回归问题。 > > 交叉熵损失函数主要应用于分类问题。 > 先上实现代码,这个函数的功能就是计算labels和logits之间的交叉熵。
还没有评论,来说两句吧...