发表评论取消回复
相关阅读
相关 机器学习-朴素贝叶斯
朴素贝叶斯介绍 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。之所以叫朴素,是因为朴素贝叶斯法对条件概率分布作了条件独立性的假设。朴素贝叶斯法是典型的生成学习
相关 机器学习实战---朴素贝叶斯算法实现+使用K折交叉验证(代码详解+创新)
《机器学习实战朴素贝叶斯算法实现+使用K折交叉验证》 未经允许,不得擅自转载! 提供数据集如下(永久有效,需要的自行下载): 链接:https://pan.baid
相关 机器学习算法之朴素贝叶斯算法
算法原理 条件概率 条件概率表示在B=b成立的条件下,A=a的概率,记作P(A=a|B=b),或者说条件概率是指事件A=a在另外一个事件B=b已经发生的条件下的概率
相关 机器学习实战笔记4(朴素贝叶斯)
前面介绍的kNN和决策树都给出了“该数据实例属于哪一类”这类问题的明确答案,而有时候的分类并不能给出明确的答案,本节讲解使用概率论进行分类的方法。 1:简单概念描述
相关 机器学习-朴素贝叶斯分类代码详解
from numpy import def loadDataSet():positionlist相当于多个文档,每行为一个文档,classvec相当
相关 机器学习算法01 - 朴素贝叶斯
朴素贝叶斯 > 朴素贝叶斯分类 ![debcda91831caefd356d377ddd1aad10.png][] ![2e2962ddb7e85a71e0cecb9
相关 python机器学习03:朴素贝叶斯算法
1.朴素贝叶斯的基本概念 1.1贝叶斯定理: P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \\frac\
还没有评论,来说两句吧...