发表评论取消回复
相关阅读
相关 降维算法实战项目(1)—使用PCA对二维数据降维(Python代码+数据集)
一、PCA算法 PCA算法为主成分分析算法,在数据集中找到“主成分”,可以用于压缩数据维度。 我们将首先通过一个2D数据集进行实验,以获得关于PCA如何工作的直观感受,
相关 PCA-1.降维原理
主成分分析(Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维 通过降维,可以发现更易于人类理解的
相关 PCA降维
概念 在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”。
相关 LDA(分类、降维)、PCA(降维)和KPCA(升维+PCA)
原文链接:[https://www.jianshu.com/p/fb25e7c8d36e][https_www.jianshu.com_p_fb25e7c8d36e] 线性
相关 pca降维算法java_PCA 降维算法详解 以及代码示例
1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚
相关 PCA降维代码实现
背景 主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理。一般我们获取的原始数据维度都很高,比如10
相关 PCA数据降维
http://[blog.csdn.net/pipisorry/article/details/49235529][blog.csdn.net_pipisorry_articl
相关 PCA降维算法
文章由两部分构成,第一部分主要讲解PCA算法的步骤,第二部分讲解PCA算法的原理。 那么首先进入第一部分 \--PCA算法的步骤 --------------------
相关 [Python数据挖掘] PCA降维
\[问题背景\] 假定有这样的数据集: ![watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG
相关 降维之pca算法
pca算法: 算法原理: pca利用的两个维度之间的关系和协方差成正比,协方差为0时,表示这两个维度无关,如果协方差越大这表明两个维度之间相关性越大,因而降维的时候,
还没有评论,来说两句吧...