ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.

绝地灬酷狼 2023-09-28 21:31 111阅读 0赞

错误解决:ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.

例:

  1. data = {
  2. 'Name': ['Microsoft', 'Google', 'huawei','Apple', 'Andriod'],'Shares': [63, 50, 71, 62, 65]}
  3. data

我们的数据展示如下:

  1. {
  2. 'Name': ['Microsoft', 'Google', 'huawei', 'Apple', 'Andriod'],
  3. 'Shares': [63, 50, 71, 62, 65]}

我最开始的目的是要找到'Shares'的取值范围在【60,75】之间的数据:

  1. df = pd.DataFrame(data)
  2. df[df['Shares']>60 & df['Shares']<75]

然后报错:ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

我们看一下完整的错误说明:

  1. ---------------------------------------------------------------------------
  2. ValueError Traceback (most recent call last)
  3. Input In [34], in <cell line: 1>()
  4. ----> 1 df[df['Shares']>60 & df['Shares']<75]
  5. File F:\anaconda\envs\sklearn-env\lib\site-packages\pandas\core\generic.py:1442, in NDFrame.__nonzero__(self)
  6. 1440 @final
  7. 1441 def __nonzero__(self):
  8. -> 1442 raise ValueError(
  9. 1443 f"The truth value of a {
  10. type(self).__name__} is ambiguous. "
  11. 1444 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
  12. 1445 )
  13. ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

问题思考

如果不使用圆括号()对条件进行分组,Python将根据运算符优先级计算表达式,这可能会给出运算符&和~的意外结果。

df[df['Shares']>60 & df['Shares']<75]可能会理解成df['Shares']>(60 & df['Shares'])<75

问题解决

为条件关系添加括号即可!

  1. df[(df['Shares']>60) & (df['Shares']<75)]

5296eeeb360f483bb1b26470e25e37d7.png

发表评论

表情:
评论列表 (有 0 条评论,111人围观)

还没有评论,来说两句吧...

相关阅读