发表评论取消回复
相关阅读
相关 NLP-词向量(Word Embedding)-2013:Word2vec模型(CBOW、Skip-Gram)【对NNLM的简化】【层次Softmax、负采样、重采样】【静态表示;无法解决一词多义】
一、文本的表示方法 (Representation) 文本是一种非结构化的数据信息,是不可以直接被计算的。因为文本不能够直接被模型计算,所以需要将其转化为向量。
相关 NLP-词向量(Word Embedding):模型发展【NNLM->Word2vec->Glove->FastText->ELMo->GPT->BERT->XLNet】
![在这里插入图片描述][watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ub
相关 NLP-词向量(Word Embedding)-2014:Glove【基于“词共现矩阵”的非0元素上的训练得到词向量】【Glove官网提供预训练词向量】【无法解决一词多义】
一、对比模型的缺点 1、矩阵分解方法(Matrix Factorization Methods) 在统计语言模型中,有一种假设,认为词的语义是由它的上下文所决
相关 NLP-词向量-发展:词袋模型【onehot、tf-idf】 -> 主题模型【LSA、LDA】 -> 词向量静态表征【Word2vec、GloVe、FastText】 -> 词向量动态表征【Bert】
NLP-词向量-发展: 词袋模型【onehot、tf-idf】 主题模型【LSA、LDA】 基于词向量的静态表征【Word2vec、GloVe、FastTe
相关 NLP-词向量(Word Embedding)-2015:C2W模型(Character to Word Embedding)【CharacterEmbedding(字符嵌入)】
[《原始论文:Finding Function in Form: Compositional Character Models for Open Vocabulary Word
相关 NLP-词向量(Word Embedding)-2001:NNLM模型【前馈神经网络语言模型】【使用马尔科夫假设:使用前 n-1 个词预测第 n 个词】
[《原始论文第一版(2001):A Neural Probabilistic Language Model》][2001_A Neural Probabilistic Lang
相关 [NLP]高级词向量表达之Word2vec详解(知识点全覆盖)
1、词表征(Word Representation) 首先明确句子是 序列化 ,里面携带了大量大信息。在NLP发展的进程里面, 采用了one-hot vector的形式来
相关 NLP 如何评估词向量
目前词向量的评估一般分为两大类:extrinsic evaluation和 intrinsic evaluation。即内部评估和外部评估。 内部评估 内部评估直接衡量
相关 神经网络词向量模型之Word2Vec
1.前言 基于one-hot对于词汇进行编码的方式着实让人头疼,又无奈。头疼的是占用空间很大,计算量大,无奈的是这么简单粗暴的方式居然一直流传到了现在。今天给大家介绍一款
相关 词向量Word Embedding原理及生成方法
前言 Word Embedding是整个自然语言处理(NLP)中最常用的技术点之一,广泛应用于企业的建模实践中。我们使用Word Embedding能够将自然文本语言映射
还没有评论,来说两句吧...