发表评论取消回复
相关阅读
相关 【TensorFlow】微调(fine tuning)
一、使用slim及nets库,调用经典模型结构 > > (调用模型,自己训练) > > import tensorflow as tf > im...
相关 解密Prompt系列4. 升级Instruction Tuning:Flan/T0/InstructGPT/TKInstruct
这一章我们聊聊指令微调,指令微调和前3章介绍的prompt有什么关系呢?哈哈只要你细品,你就会发现大家对prompt和instruction的定义存在些出入,部分认为instr
相关 解密Prompt系列3. 冻结LM微调Prompt: Prefix-Tuning & Prompt-Tuning & P-Tuning
这一章我们介绍在下游任务微调中固定LM参数,只微调Prompt的相关模型。这类模型的优势很直观就是微调的参数量小,能大幅降低LLM的微调参数量,是轻量级的微调替代品。和前两章微
相关 LLM:prompt指令数据制作
[https://github.com/ymcui/Chinese-LLaMA-Alpaca][https_github.com_ymcui_Chinese-LLaMA-Alp
相关 LLM-微调-方案(0):prompt tuning
先说结论:已经有研究显示Prompt可以有效地应用到CV领域 \[[VPT][], CLIP, CoOP\],但是应用仍然非常有限,有很大发挥空间。其一,Prompt的本质是调
相关 LLM-微调-全参数微调:Full-Param Fine-tuning(100% parameters)
fine-tuning的过程就是用训练好的参数(从已训练好的模型中获得)初始化自己的网络,然后用自己的数据接着训练,参数的调整方法与from scratch训练过程一样(梯度下
相关 微调(Fine-tune)原理
微调(Fine-tune)原理 在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。什么是微调?这里已VGG16为例进行讲解,
相关 微调(Fine-tune)原理
微调(Fine-tune)原理 在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。什么是微调?这里已VGG16为例进行讲解,下面贴出
相关 Caffe fine-tuning 微调网络
转自[Caffe fine-tuning 微调网络][Caffe fine-tuning] 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的
相关 迁移学习-微调(fine-tune)的注意事项:
选取微调形式的两个重要因素:新数据集的大小(size)和相似性(与预训练的数据集相比)。牢记卷积网络在提取特征时,前面的层所提取的更具一般性,后面的层更加具体,更倾向于原始的数
还没有评论,来说两句吧...