发表评论取消回复
相关阅读
相关 大模型微调技术LoRA与QLoRA
大模型的参数量都在100B级别,由于算力的吃紧,在这个基础上进行所有参数的微调变得不可能。LoRA正是在这个背景下提出的解决方案。 1|2原理 虽然模型的参数众多,但其
相关 大模型参数高效微调技术原理综述 之 LoRA、AdaLoRA、QLoRA
随着,ChatGPT 迅速爆火,引发了大模型的时代变革。然而对于普通大众来说,进行大模型的[预训练][Link 1]或者全量微调遥不可及。由此,催生了各种参数高效微调技术,让科
相关 AIGC|FineTune工程之LoRa高效参数微调
徐辉 | 后端开发工程师 一、引言 随着深度学习和自然语言处理技术的快速发展,大型预训练语言模型(如GPT、Vicuna、Alpaca、Llama、ChatGLM等)在
相关 Peft库实战(一):Lora微调bert(文本情感分类)
peft\_bert\_demo.py import argparse import os import torch from to
相关 Full-Parameter全参数微调与LoRA低秩微调
近年来,大型语言模型的指令微调是自然语言处理领域的一个重要研究领域。 由于资源和成本的限制,一些研究人员采用了参数有效的调整技术,如LoRA,并取得了不错的结果。与全参数微
相关 大模型-DeltaTuning:①增量式(原模型参数不变,插入可微调参数层)、②指定式(原模型参数冻结一部分参数,微调一部分参数)、③重参数化式(将原模型参数层改造,比如插入低秩)
【随着模型增大,各方案区别不大】 ![9c2b5ab5be484724ab9f0f473db60f2c.png][] ![b71bc8fda98448d3866afd79
相关 LLM-微调-全参数微调:Full-Param Fine-tuning(100% parameters)
fine-tuning的过程就是用训练好的参数(从已训练好的模型中获得)初始化自己的网络,然后用自己的数据接着训练,参数的调整方法与from scratch训练过程一样(梯度下
相关 LLM-微调-方案(一):Lora【案例:chatGLM-Lora】【在chatGLM原有结构中间插入新的网络层】【微调时冻结原有结构参数,只微调新加入的网络层参数】
Lora主要在模型中注入可训练模块,大模型在预训练完收敛之后模型包含许多进行矩阵乘法的稠密层,这些层通常是满秩的,在微调过程中其实改变量是比较小的,在矩阵乘法中表现为低秩的改变
相关 基于Keras、DenseNet模型微调、参数冻结、数据增强、模型训练、模型验证全流程记录(模型微调开发全流程记录)
基于DeneNet,使用keras搭建模型,用imagenet的权重进行预训练。densenet169的layers数量未595,冻结模型前593,增加一个2分类的dense层
相关 pytorch-模型微调
9.2 微调 在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型。我们还描述了学术界当下使用最广泛的大规模图像数据集Ima
还没有评论,来说两句吧...