1638. Count Substrings That Differ by One Character
Given two strings s
and t
, find the number of ways you can choose a non-empty substring of s
and replace a single character by a different character such that the resulting substring is a substring of t
. In other words, find the number of substrings in s
that differ from some substring in t
by exactly one character.
For example, the underlined substrings in "computer"
and "computation"
only differ by the 'e'
/'a'
, so this is a valid way.
Return the number of substrings that satisfy the condition above.
A substring is a contiguous sequence of characters within a string.
Example 1:
Input: s = "aba", t = "baba"
Output: 6
Explanation: The following are the pairs of substrings from s and t that differ by exactly 1 character:
("aba", "baba")
("aba", "baba")
("aba", "baba")
("aba", "baba")
("aba", "baba")
("aba", "baba")
The underlined portions are the substrings that are chosen from s and t.
题目:给定两个字符串s和t, 分别找s和t的子字符串subS和subT,使得将subS中一个字符替换成不同的字符可以与subT相等,简单来说就是subS和subT只差一个字符,但subS和subT的长度需要相等。问一共有多少种找法。
思路:可以用bruteforce,但用DP更简单一些。用DP就要分析题目特点:
在以下两种情况的时候可以找到新的符合要求的子字符串对:
1) 如果已经找到子字符串subS1和subT1,结尾处索引分别为index_s和index_t,再继续往下比较的时候,如果s[index_s+1]与t[index_t+1]相等,则新的子字符串对符合要求;
2)如果找到完全相等的两个子字符串对subS1和subT1, 结尾处索引分别为index_s和index_t,再继续往下比较的时候,如果s[index_s+1]与t[index_t+1]不相等,则新的子字符串对符合要求;
因此,假设m = s.length(), n = t.length(), 经分析需要维护两个m*n的二维数组sameSubStrs和diffSubStrs,两个指针i和j分别指向s和t,sameSubStrs记录s中到s[i]的子字符串和t中到t[i]的子字符串完全相等的最大字符数,diffSubStrs[i][j]记录s中截止到i和t中截止到j的符合题目要求(即只有一个不同字符)的子字符串对个数,有点拗口,举个例子说一下:
数组sameSubStrs和diffSubStrs关系如下: i=2,j=2时,s[0:2] = t[0:2],则sameSubStrs[i][j] = 3, 即s中”bac”,”ac”,”c” 和t中对应的”bac”,”ac”,”c”可以组成3个相等的子字符串对。则当i =3, j = 3时,s[i]!=t[j], diffSubStrs[i][j] = sameSubStrs[i-1][j-1] + 1. sameSubStrs[i-1][j-1]来说,构成diffSubStrs[i][j]的子字符串对分别为:”bacd”<->”bacb”, “acd”<->”acb”,”cd”<->”cb”, “d”<->”b”.
可以分析出:
当s[i] == t[j]时,sameSubStrs[i][j] = sameSubStrs[i-1][j-1] + 1
diffSubStrs[i][j] = diffSubStrs[i-1][j-1]
当s[i] != t[j]时,sameSubStrs[i][j] = 0;
diffSubStrs[i][j] = sameSubStrs[i-1][j-1] + 1
则将所有diffSubStrs[i][j]相加即为结果。
代码如下:
class Solution {
public:
int countSubstrings(string s, string t) {
vector<vector<int>> sameSubStrs(s.length()+1, vector<int>(t.length()+1, 0));
vector<vector<int>> diffSubStrs = sameSubStrs;
int res = 0;
for(int i = 0; i < s.length(); i++){
for(int j = 0; j < t.length(); j++){
if(s[i] == t[j]){
sameSubStrs[i+1][j+1] = sameSubStrs[i][j] + 1;
diffSubStrs[i+1][j+1] = diffSubStrs[i][j];
} else {
diffSubStrs[i+1][j+1] = sameSubStrs[i][j] + 1;
}
res += diffSubStrs[i+1][j+1];
}
}
return res;
}
};
还没有评论,来说两句吧...