发表评论取消回复
相关阅读
相关 如何优化机器学习模型——梯度下降原理及Python实现
如何优化机器学习模型——梯度下降原理及Python实现 梯度下降是一种常用的机器学习优化方法,可以帮助我们找到模型参数的最优解。本文将详细介绍梯度下降的原理,并使用Pytho
相关 机器学习(二)梯度下降
在上一节(线性回归)中介绍,在线性回归中参数值 θ \\theta θ是不一定可以求出的,但是可以通过梯度下降的方式可求。 在微积分里面,对多元函数的参数求偏导数,把求得的各
相关 机器学习——梯度下降法
Notation: m=number of training examples n=number of features x="input" variables /
相关 机器学习最优化算法之梯度下降
目录 定义解释 为什么使用梯度下降的原因 公式 学习率及其设置的学问 学习率是不是越大越好 全局最优解的解释 梯度下降法流程 问题总结 批量梯度下降B
相关 机器学习之梯度下降算法
机器学习之梯度下降算法 算法背景: 以房价问题为由: 房价变化可能有多种因素比如说房屋面积,房屋位置,房间数量等: 我们假设一个向量x表示输入特征:
相关 理解梯度下降在机器学习模型优化中的应用
认识梯度下降算法 这篇博客的内容是为了介绍梯度下降算法在模型优化中的作用,也就是说,正常的顺序是我们要学习一个模型(确定模型参数),在优化这么未知模型的时候,使用的是梯度
相关 [机器学习]用Java实现梯度下降
这是在coursea的解释 多元的梯度下降 运算过程 ![70][] 实际也就是求偏导数 本测试用例为2元 但适用于多元的数据 数据如下 X 1,2
相关 机器学习算法------梯度下降法
优秀的讲解博客 [刘建平的博客][Link 1] 算法简述 梯度下降通常是通过迭代的方式来搜索某个函数的极大/小值,他对目标函数每个变量求偏导得出梯度,也就是沿着
相关 机器学习 | 算法模型 —— 梯度下降算法
目录 1.概述 2.梯度 3.梯度下降算法的数学解释 4.梯度下降算法实例 4.1 单变量函数的梯度下降 4.2 多变量函数的梯度下降 5.梯度下降算法的实现
还没有评论,来说两句吧...